Characterizations of Hardy spaces associated with Laplace-Bessel operators

被引:5
|
作者
Keskin, Cansu [1 ]
Ekincioglu, Ismail [1 ]
Guliyev, Vagif S. [1 ,2 ,3 ]
机构
[1] Kutahya Dutnlupmar Univ, Dept Math, Kutahya, Turkey
[2] RUDN Univ, SM Nikolskii Inst Math, Moscow, Russia
[3] NAS, Inst Math & Mech, Baku, Azerbaijan
关键词
Atomic decomposition; Fourier-Bessel transform; Generalized shift operator; Hardy space; Riesz-Bessel transform; 42B30; 42B20; 42B10; 42B25; 42B35;
D O I
10.1007/s13324-019-00335-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain a characterization of H-Delta nu(p)(R-+(n)) Hardy spaces by using atoms associated with the radial maximal function, the nontangential maximal function and the grand maximal function related to Delta(nu) Laplace-Bessel operator for nu > 0 and 1 < p < infinity. As an application, we further establish an atomic characterization of Hardy spaces H-Delta nu(p)(R-+(n)) in terms of the high order Riesz-Bessel transform for 0 < p <= 1.
引用
收藏
页码:2281 / 2310
页数:30
相关论文
共 50 条