Applications of singular-value decomposition (SVD)

被引:45
|
作者
Akritas, AG [1 ]
Malaschonok, GI
机构
[1] Univ Thessaly, Dept Comp & Commun Engn, GR-38221 Volos, Greece
[2] Tambov Univ, Dept Math, Tambov, Russia
关键词
applications; singular-value decompositions; hanger; stretcher; aligner;
D O I
10.1016/j.matcom.2004.05.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let A be an m x n matrix with m greater than or equal to n. Then one form of the singular-value decomposition of A is A = U-T SigmaV, where U and V are orthogonal and Sigma is square diagonal. That is, UUT = I-rank(A), VVT = I-rank(A), U is rank(A) x m, V is rank(A) x n and [GRAPHICS] is a rank (A) x rank(A) diagonal matrix. In addition sigma(1) greater than or equal to sigma(2) greater than or equal to... greater than or equal to sigma(rank)(A) > 0. The sigma(i)'s are called the singular values of A and their number is equal to the rank of A. The ratio sigma(1) /sigma(rank)(A) can be regarded as a condition number of the matrix A. It is easily verified that the singular-value decomposition can be also written as [GRAPHICS] The matrix u(i)(T) v(i) is the outerproduct of the i-th row of U with the corresponding row of V. Note that each of these matrices can be stored using only m + n locations rather than mn locations.
引用
收藏
页码:15 / 31
页数:17
相关论文
共 50 条
  • [21] A PARALLEL ALGORITHM FOR COMPUTING THE SINGULAR-VALUE DECOMPOSITION OF A MATRIX
    JESSUP, ER
    SORENSEN, DC
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (02) : 530 - 548
  • [22] ON MULTIPLE PATTERN EXTRACTION USING SINGULAR-VALUE DECOMPOSITION
    KANJILAL, PP
    PALIT, S
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (06) : 1536 - 1540
  • [23] Singular-value decomposition for experimental data of dynamical systems
    Ma, Junhai
    Chen, Yushu
    Liu, Zengrong
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 12 (03): : 323 - 330
  • [24] Singular-value decomposition and electromagnetic coherence of optical beams
    Luo, Meilan
    Laatikainen, Jyrki
    Friberg, Ari T.
    Korotkova, Olga
    Setala, Tero
    OPTICS LETTERS, 2022, 47 (20) : 5337 - 5340
  • [25] SINGULAR-VALUE DECOMPOSITION FOR CROSS-WELL TOMOGRAPHY
    MICHELENA, RJ
    GEOPHYSICS, 1993, 58 (11) : 1655 - 1661
  • [26] Suboptimum CFAR detectors based on singular-value decomposition
    Sanz-Gonzalez, J. L.
    Alvarez-Vaquero, F.
    Gonzalez-Garcia, J. E.
    ELECTRONICS LETTERS, 2007, 43 (23) : 1311 - 1312
  • [27] STRUCTURAL COMPUTATIONS WITH THE SINGULAR-VALUE DECOMPOSITION OF THE EQUILIBRIUM MATRIX
    PELLEGRINO, S
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1993, 30 (21) : 3025 - 3035
  • [28] SINGULAR-VALUE DECOMPOSITION AND THE GRASSBERGER-PROCACCIA ALGORITHM
    ALBANO, AM
    MUENCH, J
    SCHWARTZ, C
    MEES, AI
    RAPP, PE
    PHYSICAL REVIEW A, 1988, 38 (06): : 3017 - 3026
  • [29] A PARALLEL ALGORITHM FOR COMPUTING THE GENERALIZED SINGULAR-VALUE DECOMPOSITION
    BAI, ZJ
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1994, 20 (03) : 280 - 288
  • [30] Computational spectroscopy via singular-value decomposition and regularization
    Wang, Peng
    Menon, Rajesh
    OPTICS EXPRESS, 2014, 22 (18): : 21541 - 21550