Singular-value decomposition and electromagnetic coherence of optical beams

被引:3
|
作者
Luo, Meilan [1 ,2 ,3 ]
Laatikainen, Jyrki [3 ]
Friberg, Ari T. [3 ]
Korotkova, Olga [4 ]
Setala, Tero [3 ]
机构
[1] Hunan Normal Univ, Dept Phys, Changsha 410081, Hunan, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
[3] Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland
[4] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA
基金
芬兰科学院; 中国国家自然科学基金;
关键词
STOKES PARAMETERS;
D O I
10.1364/OL.470477
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the implications of the singular-value decomposition of the cross-spectral density (CSD) matrix to the description of electromagnetic spectral spatial coherence of stationary light beams. We show that in a transverse plane any CSD matrix can be expressed as a mixture of two CSD matrices corresponding to beams which are fully polarized but in general spatially partially coherent. The polarization and coherence structures of these constituent beams are specified, respectively, by the singular vectors and singular values of the full CSD matrix. It follows that vector-beam coherence, including the coherence Stokes parameters and the degree of coherence, can be formulated in terms of only two correlation functions. We further establish two-point analogs of the spectral and characteristic decompositions of the polarization matrix and show that in the case of a Hermitian CSD matrix their composition is specified by the so-called degree of cross-polarization. (C) 2022 Optica Publishing Group
引用
收藏
页码:5337 / 5340
页数:4
相关论文
共 50 条
  • [1] Singular-value decomposition for electromagnetic-scattering analysis
    Suryadharma, Radius N. S.
    Fruhnert, Martin
    Rockstuhl, Carsten
    Fernandez-Corbaton, Ivan
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [2] DOWNDATING THE SINGULAR-VALUE DECOMPOSITION
    GU, M
    EISENSTAT, SC
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (03) : 793 - 810
  • [3] SINGULAR-VALUE DECOMPOSITION AND EMBEDDING DIMENSION
    MEES, AI
    RAPP, PE
    JENNINGS, LS
    PHYSICAL REVIEW A, 1987, 36 (01): : 340 - 346
  • [4] Singular-value decomposition of a tomosynthesis system
    Burvall, Anna
    Barrett, Harrison H.
    Myers, Kyle J.
    Dainty, Christopher
    OPTICS EXPRESS, 2010, 18 (20): : 20699 - 20711
  • [5] A CAVEAT CONCERNING SINGULAR-VALUE DECOMPOSITION
    NEWMAN, M
    SARDESHMUKH, PD
    JOURNAL OF CLIMATE, 1995, 8 (02) : 352 - 360
  • [6] ON THE EARLY HISTORY OF THE SINGULAR-VALUE DECOMPOSITION
    STEWART, GW
    SIAM REVIEW, 1993, 35 (04) : 551 - 566
  • [7] COMPUTING THE GENERALIZED SINGULAR-VALUE DECOMPOSITION
    BAI, ZJ
    DEMMEL, JW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06): : 1464 - 1486
  • [8] Applications of singular-value decomposition (SVD)
    Akritas, AG
    Malaschonok, GI
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 67 (1-2) : 15 - 31
  • [10] The singular-value decomposition in the extended max algebra
    Linear Algebra Its Appl, (143-176):