High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

被引:2
|
作者
Majoros, William H. [1 ,2 ]
Campbell, Michael S. [3 ]
Holt, Carson [4 ,5 ]
DeNardo, Erin K. [3 ]
Ware, Doreen [3 ,6 ]
Allen, Andrew S. [1 ,7 ]
Yandell, Mark [4 ,5 ,8 ]
Reddy, Timothy E. [1 ,2 ,7 ]
机构
[1] Duke Univ, Program Computat Biol & Bioinformat, Durham, NC 27710 USA
[2] Duke Univ, Med Sch, Ctr Genom & Computat Biol, Durham, NC 27710 USA
[3] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
[4] Univ Utah, Eccles Inst Human Genet, Dept Human Genet, Salt Lake City, UT 84112 USA
[5] Sch Med, Salt Lake City, UT 84112 USA
[6] Cornell Univ, USDA ARS NEA Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA
[7] Duke Univ, Med Sch, Dept Biostat & Bioinformat, Durham, NC 27710 USA
[8] Univ Utah, USTAR Ctr Genet Discovery, Salt Lake City, UT USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HIDDEN MARKOV MODEL; BLOOD GROUP ABO; GENOME; SEQUENCE; ANNOTATION; PROTEIN; PREDICTION; VARIANTS; IDENTIFICATION; PIPELINE;
D O I
10.1093/bioinformatics/btw799
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results: We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Supplementary information: Supplementary information is available at Bioinformatics online.
引用
收藏
页码:1437 / 1446
页数:10
相关论文
共 50 条
  • [41] High-throughput sequencing data and the impact of plant gene annotation quality
    Vaattovaara, Aleksia
    Leppala, Johanna
    Salojarvi, Jarkko
    Wrzaczek, Michael
    JOURNAL OF EXPERIMENTAL BOTANY, 2019, 70 (04) : 1069 - 1076
  • [42] Predictive Models of Gene Regulation from High-Throughput Epigenomics Data
    Althammer, Sonja
    Pages, Amadis
    Eyras, Eduardo
    COMPARATIVE AND FUNCTIONAL GENOMICS, 2012,
  • [43] Generate gene expression profile from high-throughput sequencing data
    Liu, Hui
    Jiang, Zhichao
    Fang, Xiangzhong
    Fu, Hanjiang
    Zheng, Xiaofei
    Cha, Lei
    Li, Wuju
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (06) : 1131 - 1145
  • [44] Reconciling high-throughput gene essentiality data with metabolic network reconstructions
    Blazier, Anna S.
    Papin, Jason A.
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04)
  • [45] Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data
    Matthews, Beverley B.
    dos Santos, Gilberto
    Crosby, Madeline A.
    Emmert, David B.
    St Pierre, Susan E.
    Gramates, L. Sian
    Zhou, Pinglei
    Schroeder, Andrew J.
    Falls, Kathleen
    Strelets, Victor
    Russo, Susan M.
    Gelbart, William M.
    G3-GENES GENOMES GENETICS, 2015, 5 (08): : 1721 - 1736
  • [46] Complex functionality of gene groups identified from high-throughput data
    Antonov, Alexey V.
    Mewes, Hans W.
    JOURNAL OF MOLECULAR BIOLOGY, 2006, 363 (01) : 289 - 296
  • [47] Detection call algorithms for high-throughput gene expression microarray data
    Archer, Kellie J.
    Reese, Sarah E.
    BRIEFINGS IN BIOINFORMATICS, 2010, 11 (02) : 244 - 252
  • [48] Differential gene and protein expression in the human and chimpanzee brain: A comparison using high-throughput techniques
    Bauernfeind, Amy L.
    Soderblom, Erik J.
    Turner, Meredith E.
    Moseley, Arthur M.
    Ely, John J.
    Hof, Patrick R.
    Sherwood, Chet C.
    Wray, Gregory A.
    Babbitt, Courtney C.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2014, 153 : 73 - 73
  • [49] The Southeast Collaboratory for Structural Genomics: A high-throughput gene to structure factory
    Adams, MWW
    Dailey, HA
    Delucas, LJ
    Luo, M
    Prestegard, JH
    Rose, JP
    Wang, BC
    ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (03) : 191 - 198
  • [50] Toward the development of a gene index to the human genome: An assessment of the nature of high-throughput EST sequence data
    Aaronson, JS
    Eckman, B
    Blevins, RA
    Borkowski, JA
    Myerson, J
    Imran, S
    Elliston, KO
    GENOME RESEARCH, 1996, 6 (09): : 829 - 845