High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

被引:2
|
作者
Majoros, William H. [1 ,2 ]
Campbell, Michael S. [3 ]
Holt, Carson [4 ,5 ]
DeNardo, Erin K. [3 ]
Ware, Doreen [3 ,6 ]
Allen, Andrew S. [1 ,7 ]
Yandell, Mark [4 ,5 ,8 ]
Reddy, Timothy E. [1 ,2 ,7 ]
机构
[1] Duke Univ, Program Computat Biol & Bioinformat, Durham, NC 27710 USA
[2] Duke Univ, Med Sch, Ctr Genom & Computat Biol, Durham, NC 27710 USA
[3] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
[4] Univ Utah, Eccles Inst Human Genet, Dept Human Genet, Salt Lake City, UT 84112 USA
[5] Sch Med, Salt Lake City, UT 84112 USA
[6] Cornell Univ, USDA ARS NEA Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA
[7] Duke Univ, Med Sch, Dept Biostat & Bioinformat, Durham, NC 27710 USA
[8] Univ Utah, USTAR Ctr Genet Discovery, Salt Lake City, UT USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HIDDEN MARKOV MODEL; BLOOD GROUP ABO; GENOME; SEQUENCE; ANNOTATION; PROTEIN; PREDICTION; VARIANTS; IDENTIFICATION; PIPELINE;
D O I
10.1093/bioinformatics/btw799
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results: We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Supplementary information: Supplementary information is available at Bioinformatics online.
引用
收藏
页码:1437 / 1446
页数:10
相关论文
共 50 条
  • [31] High-Throughput Analysis of Gene Expression Data for Personalized Medicine
    Geraci, Filippo
    Leoncini, Mauro
    Montangero, Manuela
    Pellegrini, Marco
    Renda, Maria Elena
    ERCIM NEWS, 2007, (69): : 38 - 39
  • [32] ScanGEO: parallel mining of high-throughput gene expression data
    Koeppen, Katja
    Stanton, Bruce A.
    Hampton, Thomas H.
    BIOINFORMATICS, 2017, 33 (21) : 3500 - 3501
  • [33] Mining high-throughput experimental data to link gene and function
    Blaby-Haas, Crysten E.
    de Crecy-Lagard, Valerie
    TRENDS IN BIOTECHNOLOGY, 2011, 29 (04) : 174 - 182
  • [34] Embedding the ESRF into the High-Throughput Gene-to-Structure Pipeline
    McCarthy, Joanne
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 : S115 - S115
  • [35] High-Throughput Data Processing at FRIB Using ESnet
    Chester, Aaron
    Cerizza, Giordano
    Crawford, Heather L.
    Fox, Ron
    Liddick, Sean N.
    Lubna, Rebeka S.
    Reece, Paul
    Rockwell, Tom
    Vasquez, Jerry
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2025, 72 (03) : 506 - 509
  • [36] High-throughput crystal structure solution using prototypes
    Griesemer, Sean D.
    Ward, Logan
    Wolverton, Chris
    PHYSICAL REVIEW MATERIALS, 2021, 5 (10)
  • [37] nEASE: a method for gene ontology subclassification of high-throughput gene expression data
    Chittenden, Thomas W.
    Howe, Eleanor A.
    Taylor, Jennifer M.
    Mar, Jessica C.
    Aryee, Martin J.
    Gomez, Harold
    Sultana, Razvan
    Braisted, John
    Nair, Sarita J.
    Quackenbush, John
    Holmes, Chris
    BIOINFORMATICS, 2012, 28 (05) : 726 - 728
  • [38] Exploring the transcription factor activity in high-throughput gene expression data using RLQ analysis
    Baty, Florent
    Ruediger, Jochen
    Miglino, Nicola
    Kern, Lukas
    Borger, Peter
    Brutsche, Martin
    BMC BIOINFORMATICS, 2013, 14
  • [39] Exploring the transcription factor activity in high-throughput gene expression data using RLQ analysis
    Florent Baty
    Jochen Rüdiger
    Nicola Miglino
    Lukas Kern
    Peter Borger
    Martin Brutsche
    BMC Bioinformatics, 14
  • [40] Generate gene expression profile from high-throughput sequencing data
    Hui Liu
    Zhichao Jiang
    Xiangzhong Fang
    Hanjiang Fu
    Xiaofei Zheng
    Lei Cha
    Wuju Li
    Frontiers of Mathematics in China, 2011, 6 : 1131 - 1145