High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

被引:2
|
作者
Majoros, William H. [1 ,2 ]
Campbell, Michael S. [3 ]
Holt, Carson [4 ,5 ]
DeNardo, Erin K. [3 ]
Ware, Doreen [3 ,6 ]
Allen, Andrew S. [1 ,7 ]
Yandell, Mark [4 ,5 ,8 ]
Reddy, Timothy E. [1 ,2 ,7 ]
机构
[1] Duke Univ, Program Computat Biol & Bioinformat, Durham, NC 27710 USA
[2] Duke Univ, Med Sch, Ctr Genom & Computat Biol, Durham, NC 27710 USA
[3] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
[4] Univ Utah, Eccles Inst Human Genet, Dept Human Genet, Salt Lake City, UT 84112 USA
[5] Sch Med, Salt Lake City, UT 84112 USA
[6] Cornell Univ, USDA ARS NEA Robert W Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA
[7] Duke Univ, Med Sch, Dept Biostat & Bioinformat, Durham, NC 27710 USA
[8] Univ Utah, USTAR Ctr Genet Discovery, Salt Lake City, UT USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HIDDEN MARKOV MODEL; BLOOD GROUP ABO; GENOME; SEQUENCE; ANNOTATION; PROTEIN; PREDICTION; VARIANTS; IDENTIFICATION; PIPELINE;
D O I
10.1093/bioinformatics/btw799
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results: We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Supplementary information: Supplementary information is available at Bioinformatics online.
引用
收藏
页码:1437 / 1446
页数:10
相关论文
共 50 条
  • [1] A probabilistic approach for SNP discovery in high-throughput human resequencing data
    Hoberman, Rose
    Dias, Joana
    Ge, Bing
    Harmsen, Eef
    Mayhew, Michael
    Verlaan, Dominique J.
    Kwan, Tony
    Dewar, Ken
    Blanchette, Mathieu
    Pastinen, Tomi
    GENOME RESEARCH, 2009, 19 (09) : 1542 - 1552
  • [2] Accurate human microsatellite genotypes from high-throughput resequencing data using informed error profiles
    Highnam, Gareth
    Franck, Christopher
    Martin, Andy
    Stephens, Calvin
    Puthige, Ashwin
    Mittelman, David
    NUCLEIC ACIDS RESEARCH, 2013, 41 (01)
  • [3] GENE DISCOVERY AND HIGH-THROUGHPUT RESEQUENCING OF CANDIDATE GENES IN EPILEPTIC ENCEPHALOPATHIES
    Myers, C. T.
    Mcmahon, J. M.
    Schneider, A.
    Moller, R. S.
    Carvill, G. L.
    Scheffer, I. E.
    Mefford, H. C.
    EPILEPSIA, 2015, 56 : 150 - 151
  • [4] High-throughput PCR assay design for targeted resequencing using primerXL
    Lefever, Steve
    Pattyn, Filip
    De Wilde, Bram
    Coppieters, Frauke
    De Keulenaer, Sarah
    Hellemans, Jan
    Vandesompele, Jo
    BMC BIOINFORMATICS, 2017, 18
  • [5] High-throughput PCR assay design for targeted resequencing using primerXL
    Steve Lefever
    Filip Pattyn
    Bram De Wilde
    Frauke Coppieters
    Sarah De Keulenaer
    Jan Hellemans
    Jo Vandesompele
    BMC Bioinformatics, 18
  • [6] Interpretation of mass spectrometry data for high-throughput proteomics
    Chamrad, DC
    Koerting, G
    Gobom, J
    Thiele, H
    Klose, J
    Meyer, HE
    Blueggel, M
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 376 (07) : 1014 - 1022
  • [7] Interpretation of mass spectrometry data for high-throughput proteomics
    Daniel C. Chamrad
    Gerhard Koerting
    Johan Gobom
    Herbert Thiele
    Joachim Klose
    Helmut E. Meyer
    Martin Blueggel
    Analytical and Bioanalytical Chemistry, 2003, 376 : 1014 - 1022
  • [8] High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline
    Beteva, A.
    Cipriani, F.
    Cusack, S.
    Delageniere, S.
    Gabadinho, J.
    Gordon, E. J.
    Guijarro, M.
    Hall, D. R.
    Larsen, S.
    Launer, L.
    Lavault, C. B.
    Leonard, G. A.
    Mairs, T.
    McCarthy, A.
    McCarthy, J.
    Meyer, J.
    Mitchell, E.
    Monaco, S.
    Nurizzo, D.
    Pernot, P.
    Pieritz, R.
    Ravelli, R. G. B.
    Rey, V.
    Shepard, W.
    Spruce, D.
    Stuart, D. I.
    Svensson, O.
    Theveneau, P.
    Thibault, X.
    Turkenburg, J.
    Walsh, M.
    McSweeney, S. M.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2006, 62 : 1162 - 1169
  • [9] LDx: Estimation of Linkage Disequilibrium from High-Throughput Pooled Resequencing Data
    Feder, Alison F.
    Petrov, Dmitri A.
    Bergland, Alan O.
    PLOS ONE, 2012, 7 (11):
  • [10] High-throughput resequencing in the diagnosis of BRCA1/2 mutations using oligonucleotide resequencing microarrays
    Schroeder, Christopher
    Stutzmann, Fanny
    Weber, Bernhard H. F.
    Riess, Olaf
    Bonin, Michael
    BREAST CANCER RESEARCH AND TREATMENT, 2010, 122 (01) : 287 - 297