Calculating ancestors in one-dimensional cellular automata

被引:3
|
作者
Mora, JCST
Martínez, GJ
Mcintosh, HV
机构
[1] Univ Autonoma Estado Hidalgo, Ctr Investigac Avanzada Ingn Ind, Pachuca 42184, Hidalgo, Mexico
[2] CINVESTAV, IPN, Dept Ingn Elect, Secc Computac, Mexico City 07360, DF, Mexico
[3] Univ Autonoma Puebla, Dept Aplicac Microcomputadoras, Inst Ciencias, Puebla 72000, Mexico
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2004年 / 15卷 / 08期
关键词
Garden-of-Eden sequences; de Bruijn diagrams; algorithms;
D O I
10.1142/S0129183104006625
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One-dimensional cellular automata are dynamical systems characterized by discreteness (in space and time), determinism and local interaction. We present a procedure to calculate the ancestors for a given sequence of states, which is based on a special kind of graph called subset diagram. We use this diagram to specify subset tables for calculating ancestors which are not Garden-of-Eden sequences, hence the process is able to yield ancestors in several generations. Some examples are illustrated using the cellular automaton Rule 110 which is the most interesting automaton of two states and three neighbors.
引用
收藏
页码:1151 / 1169
页数:19
相关论文
共 50 条
  • [31] The intrinsic universality problem of one-dimensional cellular automata
    Ollinger, N
    STACS 2003, PROCEEDINGS, 2003, 2607 : 632 - 641
  • [32] Ranks of finite semigroups of one-dimensional cellular automata
    Castillo-Ramirez, Alonso
    Gadouleau, Maximilien
    SEMIGROUP FORUM, 2016, 93 (02) : 347 - 362
  • [33] PERIODICITY IN ONE-DIMENSIONAL FINITE LINEAR CELLULAR AUTOMATA
    TADAKI, S
    MATSUFUJI, S
    PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (02): : 325 - 331
  • [34] Spectral properties of reversible one-dimensional cellular automata
    Mora, JCST
    Vergara, SVC
    Martinez, GJ
    McIntosh, HV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (03): : 379 - 395
  • [35] One-dimensional cellular automata characterization by the roughness exponent
    deSales, JA
    Martins, ML
    Moreira, JG
    PHYSICA A, 1997, 245 (3-4): : 461 - 471
  • [36] Defect particle kinematics in one-dimensional cellular automata
    Pivato, Marcus
    THEORETICAL COMPUTER SCIENCE, 2007, 377 (1-3) : 205 - 228
  • [37] Evolutions of Some One-Dimensional Homogeneous Cellular Automata
    Ghosh, Sreeya
    COMPLEX SYSTEMS, 2021, 30 (01): : 75 - 92
  • [38] Solving the parity problem in one-dimensional cellular automata
    Betel, Heather
    de Oliveira, Pedro P. B.
    Flocchini, Paola
    NATURAL COMPUTING, 2013, 12 (03) : 323 - 337
  • [39] Ranks of finite semigroups of one-dimensional cellular automata
    Alonso Castillo-Ramirez
    Maximilien Gadouleau
    Semigroup Forum, 2016, 93 : 347 - 362
  • [40] Grids and universal computations on one-dimensional cellular automata
    Yunes, Jean-Baptiste
    NATURAL COMPUTING, 2012, 11 (02) : 303 - 309