Calculating ancestors in one-dimensional cellular automata

被引:3
|
作者
Mora, JCST
Martínez, GJ
Mcintosh, HV
机构
[1] Univ Autonoma Estado Hidalgo, Ctr Investigac Avanzada Ingn Ind, Pachuca 42184, Hidalgo, Mexico
[2] CINVESTAV, IPN, Dept Ingn Elect, Secc Computac, Mexico City 07360, DF, Mexico
[3] Univ Autonoma Puebla, Dept Aplicac Microcomputadoras, Inst Ciencias, Puebla 72000, Mexico
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2004年 / 15卷 / 08期
关键词
Garden-of-Eden sequences; de Bruijn diagrams; algorithms;
D O I
10.1142/S0129183104006625
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One-dimensional cellular automata are dynamical systems characterized by discreteness (in space and time), determinism and local interaction. We present a procedure to calculate the ancestors for a given sequence of states, which is based on a special kind of graph called subset diagram. We use this diagram to specify subset tables for calculating ancestors which are not Garden-of-Eden sequences, hence the process is able to yield ancestors in several generations. Some examples are illustrated using the cellular automaton Rule 110 which is the most interesting automaton of two states and three neighbors.
引用
收藏
页码:1151 / 1169
页数:19
相关论文
共 50 条
  • [21] THE STRUCTURE OF REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA
    HILLMAN, D
    PHYSICA D, 1991, 52 (2-3): : 277 - 292
  • [22] Local information in one-dimensional cellular automata
    Helvik, T
    Lindgren, K
    Nordahl, MG
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 121 - 130
  • [23] One-Dimensional Pattern Generation by Cellular Automata
    Kutrib, Martin
    Malcher, Andreas
    CELLULAR AUTOMATA, ACRI 2020, 2021, 12599 : 46 - 55
  • [24] Boundary Growth in One-Dimensional Cellular Automata
    Brummitt, Charles D.
    Rowland, Eric
    COMPLEX SYSTEMS, 2012, 21 (02): : 85 - 116
  • [25] LYAPUNOV EXPONENTS FOR ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHERESHEVSKY, MA
    JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 1 - 8
  • [26] Model Checking One-Dimensional Cellular Automata
    Sutner, Klaus
    JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (03) : 213 - 224
  • [27] ONE-DIMENSIONAL CELLULAR AUTOMATA AS ARITHMETIC RECURSIONS
    URIAS, J
    PHYSICA D, 1989, 36 (1-2): : 109 - 110
  • [28] From One-dimensional to Two-dimensional Cellular Automata
    Dennunzio, Alberto
    FUNDAMENTA INFORMATICAE, 2012, 115 (01) : 87 - 105
  • [29] Symmetry and Entropy of One-Dimensional Legal Cellular Automata
    Yamasaki, Kazuhito
    Nanjo, Kazuyoshi Z.
    Chiba, Satoshi
    COMPLEX SYSTEMS, 2012, 20 (04): : 351 - 361
  • [30] Entanglement dynamics in one-dimensional quantum cellular automata
    Brennen, GK
    Williams, JE
    PHYSICAL REVIEW A, 2003, 68 (04): : 1 - 042311