Calculating ancestors in one-dimensional cellular automata

被引:3
|
作者
Mora, JCST
Martínez, GJ
Mcintosh, HV
机构
[1] Univ Autonoma Estado Hidalgo, Ctr Investigac Avanzada Ingn Ind, Pachuca 42184, Hidalgo, Mexico
[2] CINVESTAV, IPN, Dept Ingn Elect, Secc Computac, Mexico City 07360, DF, Mexico
[3] Univ Autonoma Puebla, Dept Aplicac Microcomputadoras, Inst Ciencias, Puebla 72000, Mexico
来源
关键词
Garden-of-Eden sequences; de Bruijn diagrams; algorithms;
D O I
10.1142/S0129183104006625
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
One-dimensional cellular automata are dynamical systems characterized by discreteness (in space and time), determinism and local interaction. We present a procedure to calculate the ancestors for a given sequence of states, which is based on a special kind of graph called subset diagram. We use this diagram to specify subset tables for calculating ancestors which are not Garden-of-Eden sequences, hence the process is able to yield ancestors in several generations. Some examples are illustrated using the cellular automaton Rule 110 which is the most interesting automaton of two states and three neighbors.
引用
收藏
页码:1151 / 1169
页数:19
相关论文
共 50 条
  • [1] Procedures for calculating reversible one-dimensional cellular automata
    Mora, JCST
    Vergara, SVC
    Martínez, GJ
    McIntosh, HV
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 202 (1-2) : 134 - 141
  • [2] Replication in one-dimensional cellular automata
    Gravner, Janko
    Gliner, Genna
    Pelfrey, Mason
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (18) : 1460 - 1474
  • [3] DETERMINISTIC ONE-DIMENSIONAL CELLULAR AUTOMATA
    PITSIANIS, N
    TSALIDES, P
    BLERIS, GL
    THANAILAKIS, A
    CARD, HC
    JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (1-2) : 99 - 112
  • [4] Signals in one-dimensional cellular automata
    Mazoyer, J
    Terrier, V
    THEORETICAL COMPUTER SCIENCE, 1999, 217 (01) : 53 - 80
  • [5] Computations on one-dimensional cellular automata
    Mazoyer, J
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1996, 16 (1-4) : 285 - 309
  • [6] APERIODICITY IN ONE-DIMENSIONAL CELLULAR AUTOMATA
    JEN, E
    PHYSICA D, 1990, 45 (1-3): : 3 - 18
  • [7] One-Dimensional Quantum Cellular Automata
    Arrighi, Pablo
    Nesme, Vincent
    Werner, Reinhard
    INTERNATIONAL JOURNAL OF UNCONVENTIONAL COMPUTING, 2011, 7 (04) : 223 - 244
  • [8] ON ERGODIC ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHIRVANI, M
    ROGERS, TD
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (03) : 599 - 605
  • [10] On Symbolic Representations of One-dimensional Cellular Automata
    Guan, Junbiao
    Chen, Fangyue
    JOURNAL OF CELLULAR AUTOMATA, 2015, 10 (1-2) : 53 - 63