Maximum matchings in sparse random graphs: Karp-Sipser revisited

被引:0
|
作者
Aronson, J
Frieze, A [1 ]
Pittel, BG
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the average performance of a simple greedy algorithm for finding a matching in a sparse random graph G(n,c/n), where c > 0 is constant. The algorithm was first proposed by Karp and Sipser [Proceedings of the Twenty-Second Annual IEEE Symposium on Foundations of Computing, 1981, pp. 364-375]. We give significantly improved estimates of the errors made by the algorithm. For the subcritical case where c < e we show that the algorithm finds a maximum matching with high probability. If c > e then with high probability the algorithm produces a matching which is within n(1/5+o(1)) of maximum size. (C) 1998 John Wiley & Sons, Inc.
引用
收藏
页码:111 / 177
页数:67
相关论文
共 50 条
  • [31] On maximum matchings in almost regular graphs
    Petrosyan, Petros A.
    DISCRETE MATHEMATICS, 2014, 318 : 58 - 61
  • [32] On maximum induced matchings in bipartite graphs
    Lozin, VV
    INFORMATION PROCESSING LETTERS, 2002, 81 (01) : 7 - 11
  • [33] Computing Maximum Matchings in Temporal Graphs
    Mertzios, George B.
    Molter, Hendrik
    Niedermeier, Rolf
    Zamaraev, Viktor
    Zschoche, Philipp
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [34] A note on maximum fractional matchings of graphs
    Ma, Tianlong
    Cheng, Eddie
    Mao, Yaping
    Wang, Xu
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 253 - 264
  • [35] Perfect matchings in random intersection graphs
    Mindaugas Bloznelis
    Tomasz Łuczak
    Acta Mathematica Hungarica, 2013, 138 : 15 - 33
  • [36] Small maximal matchings in random graphs
    Zito, M
    LATIN 2000: THEORETICAL INFORMATICS, 2000, 1776 : 18 - 27
  • [37] Random perfect matchings in regular graphs
    Granet, Bertille
    Joos, Felix
    RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (01) : 3 - 14
  • [38] Random Lifts Of Graphs: Perfect Matchings
    Nathan Linial*
    Eyal Rozenman
    Combinatorica, 2005, 25 : 407 - 424
  • [39] Small maximal matchings in random graphs
    Zito, M
    THEORETICAL COMPUTER SCIENCE, 2003, 297 (1-3) : 487 - 507
  • [40] Perfect matchings in random intersection graphs
    Bloznelis, M.
    Luczak, T.
    ACTA MATHEMATICA HUNGARICA, 2013, 138 (1-2) : 15 - 33