Maximum matchings in sparse random graphs: Karp-Sipser revisited

被引:0
|
作者
Aronson, J
Frieze, A [1 ]
Pittel, BG
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the average performance of a simple greedy algorithm for finding a matching in a sparse random graph G(n,c/n), where c > 0 is constant. The algorithm was first proposed by Karp and Sipser [Proceedings of the Twenty-Second Annual IEEE Symposium on Foundations of Computing, 1981, pp. 364-375]. We give significantly improved estimates of the errors made by the algorithm. For the subcritical case where c < e we show that the algorithm finds a maximum matching with high probability. If c > e then with high probability the algorithm produces a matching which is within n(1/5+o(1)) of maximum size. (C) 1998 John Wiley & Sons, Inc.
引用
收藏
页码:111 / 177
页数:67
相关论文
共 50 条
  • [21] Maximum weight independent sets and matchings in sparse random graphs. Exact results using the local weak convergence method
    Gamarnik, D
    Nowicki, T
    Swirszcz, G
    RANDOM STRUCTURES & ALGORITHMS, 2006, 28 (01) : 76 - 106
  • [22] Maximum matchings in random bipartite graphs and the space utilization of Cuckoo Hash tables
    Frieze, Alan
    Melsted, Pall
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (03) : 334 - 364
  • [23] Improved induced matchings in sparse graphs
    Erman, Rok
    Kowalik, Lukasz
    Krnc, Matjaz
    Walen, Tomasz
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (18) : 1994 - 2003
  • [24] Improved Induced Matchings in Sparse Graphs
    Erman, Rok
    Kowalik, Lukasz
    Krnc, Matjaz
    Walen, Tomasz
    PARAMETERIZED AND EXACT COMPUTATION, 2009, 5917 : 134 - +
  • [25] Maximum Matchings in Geometric Intersection Graphs
    Édouard Bonnet
    Sergio Cabello
    Wolfgang Mulzer
    Discrete & Computational Geometry, 2023, 70 : 550 - 579
  • [26] On maximum matchings and eigenvalues of benzenoid graphs
    Fajtlowicz, S
    John, PE
    Sachs, H
    CROATICA CHEMICA ACTA, 2005, 78 (02) : 195 - 201
  • [27] Maximum Matchings in Geometric Intersection Graphs
    Bonnet, Edouard
    Cabello, Sergio
    Mulzer, Wolfgang
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (03) : 550 - 579
  • [28] Maximum Matchings in Geometric Intersection Graphs
    Bonnet, Edouard
    Cabello, Sergio
    Mulzer, Wolfgang
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [29] A note on maximum fractional matchings of graphs
    Tianlong Ma
    Eddie Cheng
    Yaping Mao
    Xu Wang
    Journal of Combinatorial Optimization, 2022, 43 : 253 - 264
  • [30] Computing maximum matchings in temporal graphs
    Mertzios, George B.
    Molter, Hendrik
    Niedermeier, Rolf
    Zamaraev, Viktor
    Zschoche, Philipp
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2023, 137 : 1 - 19