Wafer-Scale Characterization of a Superconductor Integrated Circuit Fabrication Process, Using a Cryogenic Wafer Prober

被引:7
|
作者
West, Joshua T. [1 ]
Kurlej, Arthur [2 ]
Wynn, Alex [2 ]
Rogers, Chad [1 ]
Gouker, Mark A. [2 ]
Tolpygo, Sergey K. [2 ]
机构
[1] High Precis Devices, Boulder, CO 80301 USA
[2] MIT, Lincoln Lab, Lexington, MA 02421 USA
关键词
Testing; Probes; Cryogenics; Magnetic field measurement; Magnetic fields; Semiconductor device measurement; Superconducting integrated circuits; Cryogenic wafer prober; SQUID; superconductor electronics; superconductor integrated circuit; wafer-scale testing; ALLOYS;
D O I
10.1109/TASC.2022.3172660
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using a fully automated cryogenic wafer prober, we measured superconductor fabrication process control monitors and simple integrated circuits on 200-mm wafers at 4.4 K, including SQIF-based magnetic field sensors, SQUID-based circuits for measuring inductors, Nb/Al-AlOx/Nb Josephson junctions, test structures for measuring critical current of superconducting wires and vias, resistors, etc., to demonstrate the feasibility of using the system for characterizing niobium superconducting devices and integrated circuits on a wafer scale. Data on the wafer-scale distributions of the residual magnetic field, junction tunnel resistance, energy gap, inductance of multiple Nb layers, and critical currents of interlayer vias are presented. A comparison with existing models is made. The wafers were fabricated in the SFQ5ee process, the fully planarized process with eight niobium layers and a layer of kinetic inductors, developed for superconductor electronics at MIT Lincoln Laboratory, Lexington, MA, USA. The cryogenic wafer prober was developed at HPD/FormFactor, Inc., Boulder, CO, USA.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Towards Wafer-Scale Monocrystalline Graphene Growth and Characterization
    Nguyen, Van Luan
    Lee, Young Hee
    SMALL, 2015, 11 (29) : 3512 - 3528
  • [42] DISPATCHING IN AN INTEGRATED-CIRCUIT WAFER FABRICATION LINE
    JOHRI, PK
    1989 WINTER SIMULATION CONFERENCE PROCEEDINGS, 1989, : 918 - 921
  • [43] Integrated wafer-scale manufacturing of electron cryomicroscopy specimen supports
    Naydenova, Katerina
    Russo, Christopher J.
    ULTRAMICROSCOPY, 2022, 232
  • [44] Integrated wafer-scale manufacturing of electron cryomicroscopy specimen supports
    Naydenova, Katerina
    Russo, Christopher J.
    Ultramicroscopy, 2022, 232
  • [45] Wafer-scale δ waveguides for integrated two-dimensional photonics
    Lee, Myungjae
    Hong, Hanyu
    Yu, Jaehyung
    Mujid, Fauzia
    Ye, Andrew
    Liang, Ce
    Park, Jiwoong
    SCIENCE, 2023, 381 (6658) : 648 - 653
  • [46] Wafer-scale integration of graphene for waveguide-integrated optoelectronics
    Miseikis, Vaidotas
    Coletti, Camilla
    APPLIED PHYSICS LETTERS, 2021, 119 (05)
  • [47] A TRANSFER-FREE WAFER-SCALE CVD GRAPHENE FABRICATION PROCESS FOR MEMS/NEMS SENSORS
    Vollebregt, S.
    Alfano, B.
    Ricciardella, F.
    Giesbers, A. J. M.
    Grachova, Y.
    van Zeijl, H. W.
    Polichetti, T.
    Sarro, P. M.
    2016 IEEE 29TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2016, : 17 - 20
  • [48] A WAFER-SCALE DIGITAL INTEGRATOR USING RESTRUCTURABLE VSLI
    RAFFEL, JI
    ANDERSON, AH
    CHAPMAN, GH
    KONKLE, KH
    MATHUR, B
    SOARES, AM
    WYATT, PW
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1985, 32 (02) : 479 - 486
  • [49] Steady state thermal analysis of a reconfigurable wafer-scale circuit board
    Bougataya, Mohammed
    Lakhsasi, Ahmed
    Norman, Richard
    Prytula, Richard
    Blaquiere, Yves
    Savaria, Yvon
    2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4, 2008, : 394 - +
  • [50] Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays
    Suzuki, Hiroo
    Kaneko, Toshiro
    Shibuta, Yasushi
    Ohno, Munekazu
    Maekawa, Yuki
    Kato, Toshiaki
    NATURE COMMUNICATIONS, 2016, 7