Rigid Band Shifts in Two-Dimensional Semiconductors through External Dielectric Screening

被引:78
|
作者
Waldecker, Lutz [1 ,2 ]
Raja, Archana [3 ,4 ]
Rosner, Malte [5 ]
Steinke, Christina [6 ,7 ]
Bostwick, Aaron [8 ]
Koch, Roland J. [8 ]
Jozwiak, Chris [8 ]
Taniguchi, Takashi [9 ]
Watanabe, Kenji [9 ]
Rotenberg, Eli [8 ]
Wehling, Tim O. [6 ,7 ]
Heinz, Tony F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Appl Phys, 348 Via Pueblo Mall, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Univ Bremen, Inst Theoret Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany
[7] Univ Bremen, Bremen Ctr Computat Mat Sci, Fallturm 1a, D-28359 Bremen, Germany
[8] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[9] Natl Inst Mat Sci, Tsukuba, Ibaraki 305004, Japan
基金
美国国家科学基金会;
关键词
MONOLAYER;
D O I
10.1103/PhysRevLett.123.206403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effects of external dielectric screening on the electronic dispersion and the band gap in the atomically thin, quasi-two-dimensional (2D) semiconductor WS2 using angle-resolved photoemission and optical spectroscopies, along with first-principles calculations. We find the main effect of increased external dielectric screening to be a reduction of the quasiparticle band gap, with rigid shifts to the bands themselves. Specifically, the band gap of monolayer WS2 is decreased by about 140 meV on a graphite substrate as compared to a hexagonal boron nitride substrate, while the electronic dispersion of WS2 remains unchanged within our experimental precision of 17 meV. These essentially rigid shifts of the valence and conduction bands result from the special spatial structure of the changes in the Coulomb potential induced by the dielectric environment of the monolayer.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Contacts and Dielectrics for Two-Dimensional Semiconductors
    Vandenberghe, William
    2023 INTERNATIONAL VLSI SYMPOSIUM ON TECHNOLOGY, SYSTEMS AND APPLICATIONS, VLSI-TSA/VLSI-DAT, 2023,
  • [42] Valley excitons in two-dimensional semiconductors
    Yu, Hongyi
    Cui, Xiaodong
    Xu, Xiaodong
    Yao, Wang
    NATIONAL SCIENCE REVIEW, 2015, 2 (01) : 57 - 70
  • [43] Contact engineering for two-dimensional semiconductors
    Peng Zhang
    Yiwei Zhang
    Yi Wei
    Huaning Jiang
    Xingguo Wang
    Yongji Gong
    Journal of Semiconductors, 2020, 41 (07) : 12 - 27
  • [44] Traditional Semiconductors in the Two-Dimensional Limit
    Lucking, Michael C.
    Xie, Weiyu
    Choe, Duk-Hyun
    West, Damien
    Lu, Toh-Ming
    Zhang, S. B.
    PHYSICAL REVIEW LETTERS, 2018, 120 (08)
  • [45] Contact engineering for two-dimensional semiconductors
    Zhang, Peng
    Zhang, Yiwei
    Wei, Yi
    Jiang, Huaning
    Wang, Xingguo
    Gong, Yongji
    JOURNAL OF SEMICONDUCTORS, 2020, 41 (07)
  • [46] Mobility anisotropy of two-dimensional semiconductors
    Lang, Haifeng
    Zhang, Shuqing
    Liu, Zhirong
    PHYSICAL REVIEW B, 2016, 94 (23)
  • [47] Dark-Exciton Driven Energy Funneling into Dielectric Inhomogeneities in Two-Dimensional Semiconductors
    Su, Haowen
    Xu, Ding
    Cheng, Shan-Wen
    Li, Baichang
    Liu, Song
    Watanabe, Kenji
    Taniguchi, Takashi
    Berkelbach, Timothy C.
    Hone, James C.
    Delor, Milan
    NANO LETTERS, 2022, 22 (07) : 2843 - 2850
  • [48] EXTERNAL BOUNDARY CONTROL OF THE MOTION OF A RIGID BODY IMMERSED IN A PERFECT TWO-DIMENSIONAL FLUID
    Glass, Olivier
    Kolumban, Jozsef J.
    Sueur, Franck
    ANALYSIS & PDE, 2020, 13 (03): : 651 - 684
  • [49] Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors
    Jiang, Zeyu
    Liu, Zhirong
    Li, Yuanchang
    Duan, Wenhui
    PHYSICAL REVIEW LETTERS, 2017, 118 (26)
  • [50] Boron Monochalcogenides; Stable and Strong Two-Dimensional Wide Band-Gap Semiconductors
    Mortazavi, Bohayra
    Rabczuk, Timon
    ENERGIES, 2018, 11 (06)