Rigid Band Shifts in Two-Dimensional Semiconductors through External Dielectric Screening

被引:78
|
作者
Waldecker, Lutz [1 ,2 ]
Raja, Archana [3 ,4 ]
Rosner, Malte [5 ]
Steinke, Christina [6 ,7 ]
Bostwick, Aaron [8 ]
Koch, Roland J. [8 ]
Jozwiak, Chris [8 ]
Taniguchi, Takashi [9 ]
Watanabe, Kenji [9 ]
Rotenberg, Eli [8 ]
Wehling, Tim O. [6 ,7 ]
Heinz, Tony F. [1 ,2 ]
机构
[1] Stanford Univ, Dept Appl Phys, 348 Via Pueblo Mall, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Univ Bremen, Inst Theoret Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany
[7] Univ Bremen, Bremen Ctr Computat Mat Sci, Fallturm 1a, D-28359 Bremen, Germany
[8] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[9] Natl Inst Mat Sci, Tsukuba, Ibaraki 305004, Japan
基金
美国国家科学基金会;
关键词
MONOLAYER;
D O I
10.1103/PhysRevLett.123.206403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the effects of external dielectric screening on the electronic dispersion and the band gap in the atomically thin, quasi-two-dimensional (2D) semiconductor WS2 using angle-resolved photoemission and optical spectroscopies, along with first-principles calculations. We find the main effect of increased external dielectric screening to be a reduction of the quasiparticle band gap, with rigid shifts to the bands themselves. Specifically, the band gap of monolayer WS2 is decreased by about 140 meV on a graphite substrate as compared to a hexagonal boron nitride substrate, while the electronic dispersion of WS2 remains unchanged within our experimental precision of 17 meV. These essentially rigid shifts of the valence and conduction bands result from the special spatial structure of the changes in the Coulomb potential induced by the dielectric environment of the monolayer.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Healing detrimental defects in two-dimensional semiconductors through strain engineering
    Zhang, Xu
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (07)
  • [32] Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality
    Potts, A.
    Zhang, W.
    Bagnall, D. M.
    PHYSICAL REVIEW A, 2008, 77 (04):
  • [33] Superior Dielectric Screening in Two-Dimensional MoS2 Spirals
    Ly, Thuc Hue
    Kim, Hyun
    Thi, Quoc Huy
    Lau, Shu Ping
    Zhao, Jiong
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (43) : 37941 - 37946
  • [34] TWO-DIMENSIONAL SEMICONDUCTORS - RECENT DEVELOPMENT
    CHEMLA, DS
    JOURNAL OF LUMINESCENCE, 1985, 30 (1-4) : 502 - 519
  • [35] Emerging two-dimensional ferromagnetic semiconductors
    Kong, Denan
    Zhu, Chunli
    Zhao, Chunyu
    Liu, Jijian
    Wang, Ping
    Huang, Xiangwei
    Zheng, Shoujun
    Zheng, Dezhi
    Liu, Ruibin
    Zhou, Jiadong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (22) : 11228 - 11250
  • [36] Electrical contacts to two-dimensional semiconductors
    Allain, Adrien
    Kang, Jiahao
    Banerjee, Kaustav
    Kis, Andras
    NATURE MATERIALS, 2015, 14 (12) : 1195 - 1205
  • [37] Valley excitons in two-dimensional semiconductors
    Hongyi Yu
    Xiaodong Cui
    Xiaodong Xu
    Wang Yao
    National Science Review, 2015, 2 (01) : 57 - 70
  • [38] Measure of Diracness in two-dimensional semiconductors
    Goerbig, M. O.
    Montambaux, G.
    Piechon, F.
    EPL, 2014, 105 (05)
  • [39] Electrical contacts to two-dimensional semiconductors
    Adrien Allain
    Jiahao Kang
    Kaustav Banerjee
    Andras Kis
    Nature Materials, 2015, 14 : 1195 - 1205
  • [40] Hyperspectral microscopy of two-dimensional semiconductors
    Trovatello C.
    Genco A.
    Cruciano C.
    Ardini B.
    Li Q.
    Zhu X.
    Valentini G.
    Cerullo G.
    Manzoni C.
    Optical Materials: X, 2022, 14