Mechanism of Ce promoting SO2 resistance of MnO x /γ-Al2O3: An experimental and DFT study

被引:10
|
作者
Zhang, Xiaopeng [1 ]
Li, Zhuofeng [1 ]
Zhao, Jijun [2 ]
Cui, Yuezong [1 ]
Tan, Bojian [1 ]
Wang, Jinxin [1 ]
Zhang, Chengxiang [1 ]
He, Gaohong [1 ]
机构
[1] Dalian Univ Technol, Sch Petr & Chem Engn, State Key Lab Fine Chem, Panjin 124221, Liaoning, Peoples R China
[2] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Selective Catalytic Reduction; MnOx; Density Functional Theory; Modification; SO2; Poisoning; SELECTIVE CATALYTIC-REDUCTION; LOW-TEMPERATURE SCR; MNOX-CEO2; CATALYST; OXIDE CATALYSTS; NO REDUCTION; NH3; PERFORMANCE; OXIDATION; AMMONIA; ZR;
D O I
10.1007/s11814-017-0092-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Various physico-chemical techniques and theoretical chemistry computations are used to obtain a deep insight into the mechanism of Ce improving SO2 resistance of the catalyst Mn0.4Ce (x) /Al2O3 (x stands for the molar ratio of Ce : Al). Theoretical computation with density functional theory (DFT) shows that Ce modification enhances the adsorption energy of SO2 adsorbed on Ce surrounding, resulting in the preferential adsorption of SO2 on Ce surrounding. It protects the surface Mn from SO2 poisoning, leading to a better SO2 resistance. FT-IR and TG results are in good accordance with DFT results. FT-IR results suggest that absorption peaks related to SO4 (2-) cannot be detected in Mn0.4Ce0.12/Al2O3. Moreover, TG results show that weight loss peaks due to sulfated MnO (x) decomposition disappears after Ce addition. Therefore, Ce modification inhibits sulfates formation on active components lead to a better resistance to SO2 of Mn0.4Ce0.12/Al2O3.
引用
收藏
页码:2065 / 2071
页数:7
相关论文
共 50 条
  • [21] An investigation of the reaction mechanism for the promotion of propane oxidation over Pt/Al2O3 by SO2
    Hinz, A
    Skoglundh, M
    Fridell, E
    Andersson, A
    JOURNAL OF CATALYSIS, 2001, 201 (02) : 247 - 257
  • [22] Heterogeneous oxidation mechanism of SO2 on γ-Al2O3 (110) catalyst by H2O2: A first-principle study
    Li, Hai-long
    Dong, Fa-qin
    Bian, Liang
    Huo, Ting -ting
    He, Xiao-chun
    Zheng, Fei
    Lv, Zhen-zhen
    Jiang, Lu-man
    Li, Bowen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 611
  • [23] Promoting effect of propane traces on the activity of Pt/γ-Al2O3 and Pt–Sn/γ–Al2O3 catalysts in CH4–SO2–O2 reactions
    Grisel Corro
    Odilon C. Vazquez
    Fortino Bañuelos
    J. L. G. Fierro
    Topics in Catalysis, 2007, 42-43 : 47 - 50
  • [24] SO2 Adsorption and Transformations on γ-Al2O3 Surfaces: A Density Functional Theory Study
    Lo, John M. H.
    Ziegler, Tom
    Clark, Peter D.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (23): : 10444 - 10454
  • [25] A DFT study on PtMo resistance to SO2 poisoning
    Xia MeiRong
    Liu Ying
    Li Li
    Xiong Kun
    Qi XueQiang
    Yang LinJiang
    Hu BaoShan
    Xue Yun
    Wei ZiDong
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (07) : 1004 - 1008
  • [26] Thermogravimetric study of CuO/γ-Al2O3 sorbents for SO2 in simulated flue gas
    Yu, Qingchun
    Zhang, Shichao
    Wang, Xindong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (07) : 1975 - 1980
  • [27] A DFT study on PtMo resistance to SO2 poisoning
    MeiRong Xia
    Ying Liu
    Li Li
    Kun Xiong
    XueQiang Qi
    LinJiang Yang
    BaoShan Hu
    Yun Xue
    ZiDong Wei
    Science China Chemistry, 2013, 56 : 1004 - 1008
  • [28] DFT study on the mechanism of cheletropic addition of SO2
    Wang, WF
    Zhang, YF
    Li, JQ
    ACTA PHYSICO-CHIMICA SINICA, 2006, 22 (01) : 82 - 85
  • [29] A DFT study on PtMo resistance to SO2 poisoning
    XIA MeiRong
    LIU Ying
    LI Li
    XIONG Kun
    QI XueQiang
    YANG LinJiang
    HU BaoShan
    XUE Yun
    WEI ZiDong
    Science China(Chemistry), 2013, (07) : 1004 - 1008
  • [30] γ-Al2O3:Ce3+Cu2+ as a phosphor material; DFT plus U and experimental approach
    Mulwa, Winfred Mueni
    Dejene, Francis Birhanu
    DENSITY FUNCTIONAL THEORY: ADVANCES IN APPLICATIONS, 2019, : 49 - 64