Nonlinear autoregressive model with stochastic volatility innovations: Semiparametric and Bayesian approach

被引:5
|
作者
Hajrajabi, A. [1 ]
Yazdanian, A. R. [2 ]
Farnoosh, R. [3 ]
机构
[1] Imam Khomeini Int Univ, Fac Basic Sci, Dept Stat, Qazvin, Iran
[2] Semnan Univ, Fac Math Stat & Comp Sci, Semnan, Iran
[3] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
关键词
Stochastic volatility; Semiparametric estimation; Sequential Monte Carlo filtering; Bayesian estimation; CHAIN MONTE-CARLO;
D O I
10.1016/j.cam.2018.05.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first-order nonlinear autoregressive model with the stochastic volatility as the model of dependent innovations is considered and a semiparametric method is proposed to estimate the unknown function. Optimal filtering technique based on sequential Monte Carlo perspective is used for estimation of the hidden log-volatility in this model. Bayesian paradigm is applied for estimation of both the unknown parameters and hidden process using particle marginal Metropolis-Hastings scheme. Furthermore, an empirical application on simulated data and on the monthly excess returns of S&P 500 index is presented to study the performance of the schemes implemented. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [31] Filtering a nonlinear stochastic volatility model
    Elliott, Robert J.
    Siu, Tak Kuen
    Fung, Eric S.
    NONLINEAR DYNAMICS, 2012, 67 (02) : 1295 - 1313
  • [32] Semiparametric Bayesian inference for time-varying parameter regression models with stochastic volatility
    Dimitrakopoulos, Stefanos
    ECONOMICS LETTERS, 2017, 150 : 10 - 14
  • [33] A semiparametric Bayesian approach to the random effects model
    Kleinman, KP
    Ibrahim, JG
    BIOMETRICS, 1998, 54 (03) : 921 - 938
  • [34] Semiparametric model averaging prediction: a Bayesian approach
    Wang, Jingli
    Li, Jialiang
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2018, 60 (04) : 407 - 422
  • [35] Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture
    Jensen, Mark J.
    Maheu, John M.
    JOURNAL OF ECONOMETRICS, 2014, 178 : 523 - 538
  • [36] Semiparametric Bayesian Modeling of Income Volatility Heterogeneity
    Jensen, Shane T.
    Shore, Stephen H.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1280 - 1290
  • [37] The Methods Bayesian Analysis of the Threshold Stochastic Volatility Model
    Bidyuk, Peter
    Gozhyj, Aleksandr
    Kalinina, Irina
    Szymanski, Zdislaw
    Beglytsia, Volodymyr
    2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 70 - 74
  • [38] A robust class of nonlinear autoregressive models with regression function and dependent innovations using semiparametric kernel estimation
    Alaei, Bita
    Zare, Karim
    Shokri, Soheil
    Maleki, Mohsen
    Hajrajabi, Arezo
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (01) : 50 - 68
  • [39] Semiparametric Bayesian inference in autoregressive panel data models
    Hirano, K
    ECONOMETRICA, 2002, 70 (02) : 781 - 799
  • [40] A Bayesian semiparametric approach to correlated ROC surfaces with stochastic order constraints
    Chen, Zhen
    Hwang, Beom Seuk
    BIOMETRICS, 2019, 75 (02) : 539 - 550