Nonlinear autoregressive model with stochastic volatility innovations: Semiparametric and Bayesian approach

被引:5
|
作者
Hajrajabi, A. [1 ]
Yazdanian, A. R. [2 ]
Farnoosh, R. [3 ]
机构
[1] Imam Khomeini Int Univ, Fac Basic Sci, Dept Stat, Qazvin, Iran
[2] Semnan Univ, Fac Math Stat & Comp Sci, Semnan, Iran
[3] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
关键词
Stochastic volatility; Semiparametric estimation; Sequential Monte Carlo filtering; Bayesian estimation; CHAIN MONTE-CARLO;
D O I
10.1016/j.cam.2018.05.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first-order nonlinear autoregressive model with the stochastic volatility as the model of dependent innovations is considered and a semiparametric method is proposed to estimate the unknown function. Optimal filtering technique based on sequential Monte Carlo perspective is used for estimation of the hidden log-volatility in this model. Bayesian paradigm is applied for estimation of both the unknown parameters and hidden process using particle marginal Metropolis-Hastings scheme. Furthermore, an empirical application on simulated data and on the monthly excess returns of S&P 500 index is presented to study the performance of the schemes implemented. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [21] Semiparametric estimation of a spatial autoregressive nonparametric stochastic frontier model
    Kien C. Tran
    Mike G. Tsionas
    Journal of Spatial Econometrics, 2023, 4 (1):
  • [22] Tail behavior of a threshold autoregressive stochastic volatility model
    Diop A.
    Guegan D.
    Extremes, 2004, 7 (4) : 367 - 375
  • [23] A Bayesian Semiparametric Multiplicative Error Model With an Application to Realized Volatility
    Solgi, Reza
    Mira, Antonietta
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 558 - 583
  • [24] Long memory stochastic volatility: A Bayesian approach
    Chan, NH
    Petris, G
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (5-6) : 1367 - 1378
  • [25] Periodic autoregressive stochastic volatility
    Aknouche A.
    Statistical Inference for Stochastic Processes, 2017, 20 (2) : 139 - 177
  • [26] Discrete stochastic autoregressive volatility
    Cordis, Adriana S.
    Kirby, Chris
    JOURNAL OF BANKING & FINANCE, 2014, 43 : 160 - 178
  • [27] A semiparametric method for estimating nonlinear autoregressive model with dependent errors
    Farnoosh, R.
    Mortazavi, S. J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6358 - 6370
  • [28] The hierarchical-likelihood approach to autoregressive stochastic volatility models
    Lee, Woojoo
    Lim, Johan
    Lee, Youngjo
    del Castillo, Joan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 248 - 260
  • [29] Bayesian Analysis of a Threshold Stochastic Volatility Model
    Wirjanto, Tony S.
    Kolkiewicz, Adam W.
    Men, Zhongxian
    JOURNAL OF FORECASTING, 2016, 35 (05) : 462 - 476
  • [30] Filtering a nonlinear stochastic volatility model
    Robert J. Elliott
    Tak Kuen Siu
    Eric S. Fung
    Nonlinear Dynamics, 2012, 67 : 1295 - 1313