Hamilton's principle for quasigeostrophic motion

被引:24
|
作者
Holm, DD [1 ]
Zeitlin, V
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Univ Paris 06, Meteorol Dynam Lab, F-75252 Paris, France
[4] Univ Cambridge, Isaac Newton Inst Math Sci, Cambridge CB2 1TN, England
关键词
D O I
10.1063/1.869623
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We show that the equation of quasigeostrophic (QG) potential vorticity conservation in geophysical fluid dynamics follows from Hamilton's principle for stationary variations of an action for geodesic motion in the f-plane case or its prolongation in the beta-plane case. This implies a new momentum equation and an associated Kelvin circulation theorem for QG motion. We treat the barotropic and two-layer baroclinic cases, as well as the continuously stratified case. (C) 1998 American Institute of Physics.
引用
收藏
页码:800 / 806
页数:7
相关论文
共 50 条
  • [1] Hamilton’s principle and the rolling motion of a symmetric ball
    A. V. Borisov
    A. A. Kilin
    I. S. Mamaev
    Doklady Physics, 2017, 62 : 314 - 317
  • [2] Hamilton's Principle and the Rolling Motion of a Symmetric Ball
    Borisov, A. V.
    Kilin, A. A.
    Mamaev, I. S.
    DOKLADY PHYSICS, 2017, 62 (06) : 314 - 317
  • [3] HAMILTON'S PRINCIPLE FOR THE EULERIAN DESCRIPTION OF MOTION. II.
    Ghinda, Th.
    1600, (31):
  • [4] Semi-natural motion generation based on Hamilton's principle
    Morita, S
    Ohtsuka, T
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 1832 - 1837
  • [5] HAMILTON'S PRINCIPLE FOR THE EULERIAN DESCRIPTION OF MOTION. I.
    Ghinda, Th.
    Revue roumaine des sciences techniques. Serie de mecanique appliquee, 1985, 30 (06): : 551 - 564
  • [6] Hamilton's principle for beginners
    Brun, J. L.
    EUROPEAN JOURNAL OF PHYSICS, 2007, 28 (03) : 487 - 491
  • [7] HAMILTON PRINCIPLE, LAGRANGE METHOD, AND SHIP MOTION THEORY
    MILOH, T
    JOURNAL OF SHIP RESEARCH, 1984, 28 (04): : 229 - 237
  • [8] On the use of generalized Hamilton's principle for the derivation of the equation of motion of a pipe conveying fluid
    Kheiri, M.
    Paidoussis, M. P.
    JOURNAL OF FLUIDS AND STRUCTURES, 2014, 50 : 18 - 24
  • [9] Hamilton's principle for dynamical elasticity
    He, Ji-Huan
    APPLIED MATHEMATICS LETTERS, 2017, 72 : 65 - 69
  • [10] From probabilities to Hamilton's principle
    Kapsa, V.
    Skala, L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (31)