Hamilton’s principle and the rolling motion of a symmetric ball

被引:0
|
作者
A. V. Borisov
A. A. Kilin
I. S. Mamaev
机构
[1] Blagonravov Mechanical Engineering Research Institute of RAS,
[2] Udmurt State University,undefined
[3] Institute of Mathematics and Mechanics of the Ural Branch of RAS,undefined
[4] Kalashnikov Izhevsk State Technical University,undefined
来源
Doklady Physics | 2017年 / 62卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that the trajectories of a dynamical system with nonholonomic constraints can satisfy Hamilton’s principle. As the simplest illustration, we consider the problem of a homogeneous ball rolling without slipping on a plane. However, Hamilton’s principle is formulated either for a reduced system or for a system defined in an extended phase space. It is shown that the dynamics of a nonholonomic homogeneous ball can be embedded in a higher-dimensional Hamiltonian phase flow. We give two examples of such an embedding: embedding in the phase flow of a free system and embedding in the phase flow of the corresponding vakonomic system.
引用
收藏
页码:314 / 317
页数:3
相关论文
共 50 条
  • [1] Hamilton's Principle and the Rolling Motion of a Symmetric Ball
    Borisov, A. V.
    Kilin, A. A.
    Mamaev, I. S.
    DOKLADY PHYSICS, 2017, 62 (06) : 314 - 317
  • [2] Hamilton's principle for quasigeostrophic motion
    Holm, DD
    Zeitlin, V
    PHYSICS OF FLUIDS, 1998, 10 (04) : 800 - 806
  • [3] HAMILTON'S PRINCIPLE FOR THE EULERIAN DESCRIPTION OF MOTION. II.
    Ghinda, Th.
    1600, (31):
  • [4] Semi-natural motion generation based on Hamilton's principle
    Morita, S
    Ohtsuka, T
    SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 1832 - 1837
  • [5] HAMILTON'S PRINCIPLE FOR THE EULERIAN DESCRIPTION OF MOTION. I.
    Ghinda, Th.
    Revue roumaine des sciences techniques. Serie de mecanique appliquee, 1985, 30 (06): : 551 - 564
  • [6] Learning to Regulate Rolling Ball Motion
    Jha, Devesh K.
    Yerazunis, William
    Nikovski, Daniel
    Farahmand, Amir-massoud
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1671 - 1676
  • [7] Existence of Liouvillian Solutions in the Problem of Rolling Motion of a Dynamically Symmetric Ball on a Perfectly Rough Sphere
    Kuleshov, A. S.
    Katasonova, V. A.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2018, 51 (04) : 407 - 412
  • [8] Hamilton's principle for beginners
    Brun, J. L.
    EUROPEAN JOURNAL OF PHYSICS, 2007, 28 (03) : 487 - 491
  • [9] ROLLING MOTION OF A BALL ON PRESSURE SENSITIVE ADHESIVES
    MIZUMACHI, H
    SAITO, T
    JOURNAL OF ADHESION, 1986, 20 (02): : 83 - 97
  • [10] On the motion of a mechanical system inside a rolling ball
    Bolotin, S. V.
    Popova, T. V.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (1-2): : 159 - 165