Hamilton's principle for quasigeostrophic motion

被引:24
|
作者
Holm, DD [1 ]
Zeitlin, V
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Univ Paris 06, Meteorol Dynam Lab, F-75252 Paris, France
[4] Univ Cambridge, Isaac Newton Inst Math Sci, Cambridge CB2 1TN, England
关键词
D O I
10.1063/1.869623
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We show that the equation of quasigeostrophic (QG) potential vorticity conservation in geophysical fluid dynamics follows from Hamilton's principle for stationary variations of an action for geodesic motion in the f-plane case or its prolongation in the beta-plane case. This implies a new momentum equation and an associated Kelvin circulation theorem for QG motion. We treat the barotropic and two-layer baroclinic cases, as well as the continuously stratified case. (C) 1998 American Institute of Physics.
引用
收藏
页码:800 / 806
页数:7
相关论文
共 50 条
  • [21] Hamilton's principle for nonholonomic systems.
    Hamel, G
    MATHEMATISCHE ANNALEN, 1935, 111 : 94 - 97
  • [22] Hamilton’s principle as inequality for inelastic bodies
    Q. Yang
    Q. C. Lv
    Y. R. Liu
    Continuum Mechanics and Thermodynamics, 2017, 29 : 747 - 756
  • [23] HAMILTON'S PRINCIPLE AND ELECTRIC CIRCUITS THEORY
    Mayer, D.
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 5 (01) : 185 - 189
  • [24] Some Further Remarks on Hamilton's Principle
    Udwadia, Firdaus E.
    Leitmann, George
    Cho, Hancheol
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2011, 78 (01): : 0110141 - 0110144
  • [25] Hamilton's principle as inequality for inelastic bodies
    Yang, Q.
    Lv, Q. C.
    Liu, Y. R.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2017, 29 (03) : 747 - 756
  • [26] Generalized Hamilton's principle with fractional derivatives
    Atanackovic, T. M.
    Konjik, S.
    Oparnica, Lj
    Pilipovic, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (25)
  • [27] Hamilton's principle and the field equations of radiation
    Meksyn, D
    PHILOSOPHICAL MAGAZINE, 1930, 9 (58): : 568 - 577
  • [28] Hamilton's principle based on thermomass theory
    Song Bai
    Wu Jing
    Guo Zeng-Yuan
    ACTA PHYSICA SINICA, 2010, 59 (10) : 7129 - 7134
  • [29] Adiabatic invariant in light of Hamilton's principle
    Chen, Yih-Yuh
    CHINESE JOURNAL OF PHYSICS, 2020, 67 : 253 - 264
  • [30] Hamilton's Principle for Circuits with Dissipative Elements
    Biolek, Zdenek
    Biolek, Dalibor
    Biolkova, Viera
    COMPLEXITY, 2019, 2019