Discrete Legendre spectral projection methods for Fredholm-Hammerstein integral equations

被引:31
|
作者
Das, Payel [1 ]
Nelakanti, Gnaneshwar [1 ]
Long, Guangqing [2 ]
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
[2] GuangXi Teachers Educ Univ, Dept Math, Nanning 530001, Peoples R China
关键词
Hammerstein integral equations; Spectral method; Discrete Galerkin; Discrete collocation; Numerical quadrature; Convergence rates; COLLOCATION-TYPE METHOD; GALERKIN METHOD; SUPERCONVERGENCE;
D O I
10.1016/j.cam.2014.10.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the discrete Legendre Galerkin and discrete Legendre collocation methods for Fredholm-Hammerstein integral equations with smooth kernel. Using sufficiently accurate numerical quadrature rule, we obtain optimal convergence rates for both discrete Legendre Galerkin and discrete Legendre collocation solutions in both infinity and L-2-norm. Numerical examples are given to illustrate the theoretical results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:293 / 305
页数:13
相关论文
共 50 条