Jacobi spectral projection methods for Fredholm integral equations of the first kind

被引:0
|
作者
Subhashree Patel
Bijaya Laxmi Panigrahi
机构
[1] Sambalpur University,Department of Mathematics
[2] Gangadhar Meher University,Department of Mathematics
来源
Numerical Algorithms | 2024年 / 96卷
关键词
Ill-posed problems; Fredholm integral equation of the first kind; Galerkin method; Tikhonov regularization method; Jacobi polynomials; 45B05; 65J20; 65R30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we employ Tikhonov regularization method with the projection methods using Jacobi polynomial bases to the first kind of Fredholm integral equations to find the approximate solution. We discuss the convergence analysis and obtain the convergence rates in Lwα,β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}^{\textbf{2}}_{\varvec{w}^{\varvec{\alpha ,\beta }}}$$\end{document} norm under a priori parameter choice strategy. We also consider the Engl-type discrepancy principle as a posteriori parameter strategy for finding the regularization parameter and also evaluate the convergence rate which is of optimal order. Finally, we provide the numerical experiments to justify the theoretical results.
引用
收藏
页码:33 / 57
页数:24
相关论文
共 50 条