Jacobi spectral projection methods for Fredholm integral equations of the first kind

被引:0
|
作者
Subhashree Patel
Bijaya Laxmi Panigrahi
机构
[1] Sambalpur University,Department of Mathematics
[2] Gangadhar Meher University,Department of Mathematics
来源
Numerical Algorithms | 2024年 / 96卷
关键词
Ill-posed problems; Fredholm integral equation of the first kind; Galerkin method; Tikhonov regularization method; Jacobi polynomials; 45B05; 65J20; 65R30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we employ Tikhonov regularization method with the projection methods using Jacobi polynomial bases to the first kind of Fredholm integral equations to find the approximate solution. We discuss the convergence analysis and obtain the convergence rates in Lwα,β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}^{\textbf{2}}_{\varvec{w}^{\varvec{\alpha ,\beta }}}$$\end{document} norm under a priori parameter choice strategy. We also consider the Engl-type discrepancy principle as a posteriori parameter strategy for finding the regularization parameter and also evaluate the convergence rate which is of optimal order. Finally, we provide the numerical experiments to justify the theoretical results.
引用
收藏
页码:33 / 57
页数:24
相关论文
共 50 条
  • [11] Legendre Spectral Projection Methods for Fredholm–Hammerstein Integral Equations
    Payel Das
    Mitali Madhumita Sahani
    Gnaneshwar Nelakanti
    Guangqing Long
    Journal of Scientific Computing, 2016, 68 : 213 - 230
  • [12] SPECTRAL JACOBI-GALERKIN METHODS AND ITERATED METHODS FOR FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND WITH WEAKLY SINGULAR KERNEL
    Yang, Yin
    Huang, Yunqing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (03): : 685 - 702
  • [13] Legendre Spectral Projection Methods for Fredholm-Hammerstein Integral Equations
    Das, Payel
    Sahani, Mitali Madhumita
    Nelakanti, Gnaneshwar
    Long, Guangqing
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 213 - 230
  • [14] EXTRAPOLATION FOR FINITE ELEMENT METHODS OF THE FIRST KIND FREDHOLM INTEGRAL EQUATIONS
    Zhou Aihui (Institute of Systems Science
    Systems Science and Mathematical Sciences, 1991, (01) : 41 - 50
  • [15] Superconvergent spectral projection and multi-projection methods for nonlinear Fredholm integral equations
    Chakraborty, Samiran
    Agrawal, Shivam Kumar
    Nelakanti, Gnaneshwar
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025, 102 (02) : 389 - 414
  • [16] On the regularization of Fredholm integral equations of the first kind
    De Micheli, E
    Magnoli, N
    Viano, GA
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (04) : 855 - 877
  • [17] Extrapolation of Discrete Multi-Projection Methods for Fredholm Integral Equations of the Second Kind
    Long, Guangqing
    Xuan, Lifeng
    Chen, Jianjun
    2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, : 64 - 68
  • [18] Polynomially based multi-projection methods for Fredholm integral equations of the second kind
    Long, Guangqing
    Sahani, Mitali Madhumita
    Nelakanti, Gnaneshwar
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (01) : 147 - 155
  • [19] Preconditioned Jacobi-Type Iterative Methods for Solving Fredholm Integral Equations of the Second Kind
    Muthuvalu, Mohana Sundaram
    Aruchunan, Elayaraja
    Ali, Majid Khan Majahar
    Sulaiman, Jumat
    ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 1750
  • [20] Superconvergence of Legendre spectral projection methods for Fredholm-Hammerstein integral equations
    Mandal, Mournita
    Nelakanti, Gnaneshwar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 423 - 439