On the Neutrino Self Refraction Problem from a Many-Body Perspective

被引:5
|
作者
Pehlivan, Y. [1 ,2 ]
Kajino, Toshitaka [2 ,3 ]
Balantekin, A. B. [4 ]
Yoshida, Takashi [3 ]
Maruyama, Tomoyuki [5 ]
机构
[1] Mimar Sinan Fine Arts Univ Besiktas, TR-34349 Istanbul, Turkey
[2] Natl Astron Observatory Japan, Mitaka, Tokyo 1818588, Japan
[3] Univ Tokyo, Grad Sch Sci, Dept Astron, Tokyo 1138654, Japan
[4] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[5] Nihon Univ, Coll Bioresource Sci, Fujisawa, Kanagawa 2528510, Japan
基金
美国国家科学基金会;
关键词
Supernovae; nonlinear effects in neutrino propagation; neutrinos in matter; integrable dynamics; DENSE MATTER; SCATTERING; SUPERCONDUCTIVITY; NUCLEI; GASES;
D O I
10.1063/1.3485133
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a dense neutrino gas as a many body system by taking into account both vacuum oscillations and self interactions of neutrinos. We show that the exact many body Hamiltonian which describes the flavor oscillations of such a dense neutrino gas has many constants of motion whose eigenvalues represent a set of good quantum numbers. However, if one adopts the random phase approximation as an effective one particle description, these operators are no longer conserved (i.e., they cease to represent good quantum numbers) although their expectation values are still conserved.
引用
收藏
页码:189 / +
页数:2
相关论文
共 50 条
  • [31] Construction and analysis of a simplified many-body neutrino model
    Friedland, Alexander
    McKellar, Bruce H. J.
    Okuniewicz, Ivona
    PHYSICAL REVIEW D, 2006, 73 (09):
  • [32] SOLUTION OF THE NUCLEAR MANY-BODY PROBLEM
    BRUECKNER, KA
    GAMMEL, JL
    PHYSICAL REVIEW, 1957, 105 (05): : 1679 - 1681
  • [33] VARIATIONAL APPROACH TO MANY-BODY PROBLEM
    DAPROVIDENCIA, JD
    NUCLEAR PHYSICS, 1965, 61 (01): : 87 - +
  • [34] THE RELATIVISTIC ATOMIC MANY-BODY PROBLEM
    BROWN, GE
    PHYSICA SCRIPTA, 1987, 36 (01): : 71 - 76
  • [35] Periods of the goldfish many-body problem
    Gomez-Ullate, D
    Sommacal, M
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 : 351 - 362
  • [36] A NEW METHOD IN THE MANY-BODY PROBLEM
    KRASOVKSY, IV
    PERESADA, VI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : 1493 - 1505
  • [37] PERTURBATION TREATMENT OF THE MANY-BODY PROBLEM
    SWIATECKI, WJ
    PHYSICAL REVIEW, 1956, 101 (04): : 1321 - 1325
  • [38] Quantum dots and the many-body problem
    Weidenmüller, HA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1389 - 1403
  • [39] Hill stability in the many-body problem
    Luk'yanov, LG
    Nasonova, LP
    Shirmin, GI
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2003, 29 (04): : 274 - 277
  • [40] On the Quadratization of the Integrals for the Many-Body Problem
    Ying, Yu
    Baddour, Ali
    Gerdt, Vladimir P.
    Malykh, Mikhail
    Sevastianov, Leonid
    MATHEMATICS, 2021, 9 (24)