On the Neutrino Self Refraction Problem from a Many-Body Perspective

被引:5
|
作者
Pehlivan, Y. [1 ,2 ]
Kajino, Toshitaka [2 ,3 ]
Balantekin, A. B. [4 ]
Yoshida, Takashi [3 ]
Maruyama, Tomoyuki [5 ]
机构
[1] Mimar Sinan Fine Arts Univ Besiktas, TR-34349 Istanbul, Turkey
[2] Natl Astron Observatory Japan, Mitaka, Tokyo 1818588, Japan
[3] Univ Tokyo, Grad Sch Sci, Dept Astron, Tokyo 1138654, Japan
[4] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[5] Nihon Univ, Coll Bioresource Sci, Fujisawa, Kanagawa 2528510, Japan
基金
美国国家科学基金会;
关键词
Supernovae; nonlinear effects in neutrino propagation; neutrinos in matter; integrable dynamics; DENSE MATTER; SCATTERING; SUPERCONDUCTIVITY; NUCLEI; GASES;
D O I
10.1063/1.3485133
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a dense neutrino gas as a many body system by taking into account both vacuum oscillations and self interactions of neutrinos. We show that the exact many body Hamiltonian which describes the flavor oscillations of such a dense neutrino gas has many constants of motion whose eigenvalues represent a set of good quantum numbers. However, if one adopts the random phase approximation as an effective one particle description, these operators are no longer conserved (i.e., they cease to represent good quantum numbers) although their expectation values are still conserved.
引用
收藏
页码:189 / +
页数:2
相关论文
共 50 条
  • [21] MANY-BODY POINT TRANSFORMS IN HARD-CORE MANY-BODY PROBLEM
    WITRIOL, NM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (01): : 108 - &
  • [22] Many-body localization from the perspective of Integrals of Motion
    Rademaker, Louk
    Ortuno, Miguel
    Somoza, Andres M.
    ANNALEN DER PHYSIK, 2017, 529 (07)
  • [23] Neutrino many-body flavor evolution: The full Hamiltonian
    Cirigliano, Vincenzo
    Sen, Srimoyee
    Yamauchi, Yukari
    PHYSICAL REVIEW D, 2024, 110 (12)
  • [24] The electron many-body problem in graphene
    Uchoa, Bruno
    Reed, James P.
    Gan, Yu
    Joe, Young Il
    Fradkin, Eduardo
    Abbamonte, Peter
    Casa, Diego
    PHYSICA SCRIPTA, 2012, T146
  • [25] VARIATIONAL APPROACH TO THE MANY-BODY PROBLEM
    AYRES, RU
    PHYSICAL REVIEW, 1958, 111 (06): : 1453 - 1460
  • [26] THE MANY-BODY PROBLEM AND THE BRUECKNER APPROXIMATION
    RODBERG, LS
    ANNALS OF PHYSICS, 1957, 2 (03) : 199 - 225
  • [27] DENSITY MATRICES IN MANY-BODY PROBLEM
    GLUCK, P
    PHYSICAL REVIEW, 1968, 176 (05): : 1534 - &
  • [28] A Solvable Many-Body Problem in the Plane
    F. Calogero
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 289 - 293
  • [29] Proteins: A challenging many-body problem
    Frauenfelder, H
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1996, 74 (05): : 579 - 585
  • [30] Hill stability in the many-body problem
    L. G. Luk’yanov
    L. P. Nasonova
    G. I. Shirmin
    Astronomy Letters, 2003, 29 : 274 - 277