Mesoscopic and multiscale modelling in materials

被引:214
|
作者
Fish, Jacob [1 ]
Wagner, Gregory J. [2 ]
Keten, Sinan [2 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Northwestern Univ, Evanston, IL USA
关键词
GENERALIZED MATHEMATICAL HOMOGENIZATION; PERIODIC HETEROGENEOUS MEDIA; QUASI-CONTINUUM METHOD; FINITE-ELEMENT-METHOD; COARSE-GRAINED MODEL; UNCERTAINTY QUANTIFICATION; COMPUTATIONAL HOMOGENIZATION; MOLECULAR-DYNAMICS; CRACK-PROPAGATION; MULTIGRID METHOD;
D O I
10.1038/s41563-020-00913-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiscale modelling is a powerful tool to simulate materials behaviour, which has important features across multiple length and time scales. This Review provides an overview of multiscale computation methods and discusses their development for use in material design. The concept of multiscale modelling has emerged over the last few decades to describe procedures that seek to simulate continuum-scale behaviour using information gleaned from computational models of finer scales in the system, rather than resorting to empirical constitutive models. A large number of such methods have been developed, taking a range of approaches to bridging across multiple length and time scales. Here we introduce some of the key concepts of multiscale modelling and present a sampling of methods from across several categories of models, including techniques developed in recent years that integrate new fields such as machine learning and material design.
引用
收藏
页码:774 / 786
页数:13
相关论文
共 50 条
  • [41] Multiscale modelling of twisted bilayers of 2D materials
    Ferreira, Fabio
    NATURE REVIEWS PHYSICS, 2022, 4 (10) : 632 - 632
  • [42] Multiscale modelling of charged impurities in two-dimensional materials
    Lischner, Johannes
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 160 : 368 - 373
  • [43] Perspectives on multiscale modelling and experiments to accelerate materials development for fusion
    Gilbert, M. R.
    Arakawa, K.
    Bergstrom, Z.
    Caturla, M. J.
    Dudarev, S. L.
    Gao, F.
    Goryaeva, A. M.
    Hu, S. Y.
    Hu, X.
    Kurtz, R. J.
    Litnovsky, A.
    Marian, J.
    Marinica, M-C
    Martinez, E.
    Marquis, E. A.
    Mason, D. R.
    Nguyen, B. N.
    Olsson, P.
    Osetskiy, Y.
    Senor, D.
    Setyawan, W.
    Short, M. P.
    Suzudo, T.
    Trelewicz, J. R.
    Tsuru, T.
    Was, G. S.
    Wirth, B. D.
    Yang, L.
    Zhang, Y.
    Zinkle, S. J.
    JOURNAL OF NUCLEAR MATERIALS, 2021, 554
  • [44] Multiscale modelling of graphene platelets-based nanocomposite materials
    Azoti, Wiyao Leleng
    Elmarakbi, Ahmed
    COMPOSITE STRUCTURES, 2017, 168 : 313 - 321
  • [45] PREFACE: MULTISCALE MODELLING OF MATERIALS AND STRUCTURES, PT. II
    Burczy, Tadeusz
    Oliver, Xavier
    Pietrzyk, Maciej
    Huespe, Alfredo
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2017, 15 (05) : V - V
  • [46] Multiscale modelling of materials chemomechanics: brittle fracture of oxides and semiconductors
    Kermode, James
    Peralta, Giovanni
    Li, Zhenwei
    De Vita, Alessandro
    20TH EUROPEAN CONFERENCE ON FRACTURE, 2014, 3 : 1681 - 1686
  • [48] Multiscale modelling approach to determine the specific heat of cementitious materials
    Bernard, Fabrice
    Fu, Jia
    Kamali-Bernard, Siham
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2019, 23 (05) : 535 - 551
  • [49] Modelling mesoscopic systems
    Choy, T.C.
    Harding, J.H.
    Harker, A.H.
    Mulheran, P.A.
    Smith, L.W.
    Stoneham, A.M.
    Proceedings of the International Conference and Exhibition on Computer Applications to Materials Science and Engineering, 1991,
  • [50] Multiscale modelling
    Visscher, Lucas
    Bolhuis, Peter
    Bickelhaupt, F. Matthias
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (22) : 10399 - 10400