Mesoscopic and multiscale modelling in materials

被引:214
|
作者
Fish, Jacob [1 ]
Wagner, Gregory J. [2 ]
Keten, Sinan [2 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Northwestern Univ, Evanston, IL USA
关键词
GENERALIZED MATHEMATICAL HOMOGENIZATION; PERIODIC HETEROGENEOUS MEDIA; QUASI-CONTINUUM METHOD; FINITE-ELEMENT-METHOD; COARSE-GRAINED MODEL; UNCERTAINTY QUANTIFICATION; COMPUTATIONAL HOMOGENIZATION; MOLECULAR-DYNAMICS; CRACK-PROPAGATION; MULTIGRID METHOD;
D O I
10.1038/s41563-020-00913-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiscale modelling is a powerful tool to simulate materials behaviour, which has important features across multiple length and time scales. This Review provides an overview of multiscale computation methods and discusses their development for use in material design. The concept of multiscale modelling has emerged over the last few decades to describe procedures that seek to simulate continuum-scale behaviour using information gleaned from computational models of finer scales in the system, rather than resorting to empirical constitutive models. A large number of such methods have been developed, taking a range of approaches to bridging across multiple length and time scales. Here we introduce some of the key concepts of multiscale modelling and present a sampling of methods from across several categories of models, including techniques developed in recent years that integrate new fields such as machine learning and material design.
引用
收藏
页码:774 / 786
页数:13
相关论文
共 50 条
  • [31] Mesoscopic modelling
    Harding, JH
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1997, 2 (06): : 728 - 732
  • [32] The use of multiscale materials modelling within the UK nuclear industry
    Flewitt, PEJ
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 365 (1-2): : 257 - 266
  • [33] Multiscale damage modelling for composite materials: theory and computational framework
    Fish, J
    Yu, Q
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 52 (1-2) : 159 - 191
  • [34] Multiscale Modelling of the Slope Stability of Block-in-Matrix Materials
    Guerra, Clairet I.
    Pinzon, Jeisson J.
    Prada, Luis F.
    Ramos, Alfonso M.
    GEO-CHICAGO 2016: SUSTAINABLE GEOENVIRONMENTAL SYSTEMS, 2016, (271): : 658 - 667
  • [35] Multiscale modelling of twisted bilayers of 2D materials
    Fábio Ferreira
    Nature Reviews Physics, 2022, 4 : 632 - 632
  • [36] Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials
    Van Houtte, Paul
    Kanjarla, Anand Krishna
    Van Bael, Albert
    Seefeldt, Marc
    Delannay, Laurent
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2006, 25 (04) : 634 - 648
  • [37] Multiscale modelling of thermal conductivity in composite materials for cryogenic structures
    Alzina, A
    Toussaint, E
    Béakou, A
    Skoczen, B
    COMPOSITE STRUCTURES, 2006, 74 (02) : 175 - 185
  • [38] PREFACE: COMPUTATIONAL MULTISCALE MODELLING AND DESIGN OF NEW ENGINEERING MATERIALS
    Burczynski, Tadeusz
    Oliver, Xavier
    Pietrzyk, Maciej
    Huespe, Alfredo
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2019, 17 (03) : V - VI
  • [39] PREFACE: MULTISCALE MODELLING OF MATERIALS AND STRUCTURES, PT. I
    Burczynski, Tadeusz
    Pietrzyk, Maciej
    Oliver, Xavier
    Huespe, Alfredo
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2017, 15 (04) : V - V
  • [40] Ablation of carbon-based materials: Multiscale roughness modelling
    Vignoles, Gerard L.
    Lachaud, Jean
    Aspa, Yvan
    Goyheneche, Jean-Marc
    COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (09) : 1470 - 1477