Exact Solution of Random Graphs for Cluster Fragmentation

被引:0
|
作者
Nga, D. T. [1 ]
Lan, N. T. Phuong [2 ]
Nghia, D. C. [2 ]
Desesquelles, P. [3 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam
[2] Hanoi Pedag Univ 2, Hanoi, Vietnam
[3] Univ Paris Sud & CSNSM CNRS, F-91405 Orsay, France
关键词
D O I
10.1088/1742-6596/537/1/012008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the exact solution of a combinatorial fragmentation model and we show how it can be used as a touchstone for the fragmentation of atomic clusters. This model, random graphs (RG), also called mean field percolation, displays a phase transition. In this model, the clusters are solely described as connected entities called nodes. The connections, called bonds, can be active of broken. We have established the algebraic formulas of the probability of all the fragmentation channels. The results depend on the number of nodes and of the number of broken bonds. Using RG, we show example where information was deduced from fragmentation of systems consisting of finite sets of nodes.
引用
收藏
页数:8
相关论文
共 50 条
  • [22] Exact Solution for a Class of Random Walk on the Hypercube
    Benedetto Scoppola
    Journal of Statistical Physics, 2011, 143 : 413 - 419
  • [23] EXACT SOLUTION FOR CLASSICAL DIFFUSION ON RANDOM CHAINS
    HEINRICHS, J
    PHYSICAL REVIEW LETTERS, 1984, 52 (15) : 1261 - 1264
  • [24] EXACT SOLUTION FOR DIFFUSION IN A RANDOM POTENTIAL - COMMENT
    GUYER, RA
    MACHTA, J
    PHYSICAL REVIEW LETTERS, 1990, 64 (04) : 494 - 494
  • [25] Exact solution of an octagonal random tiling model
    deGier, J
    Nienhuis, B
    PHYSICAL REVIEW LETTERS, 1996, 76 (16) : 2918 - 2921
  • [26] Exact Solution for a Class of Random Walk on the Hypercube
    Scoppola, Benedetto
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) : 413 - 419
  • [27] POTTS CHAIN IN A RANDOM FIELD - AN EXACT SOLUTION
    RIERA, R
    CHAVES, CM
    DOSSANTOS, RR
    PHYSICAL REVIEW B, 1985, 31 (05): : 3093 - 3099
  • [28] Exact solution of bond percolation on small arbitrary graphs
    Allard, A.
    Hebert-Dufresne, L.
    Noel, P. -A.
    Marceau, V.
    Dube, L. J.
    EPL, 2012, 98 (01)
  • [29] Large deviations and exact asymptotics for constrained exponential random graphs
    Yin, Mei
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 14
  • [30] Horizontal visibility graphs: Exact results for random time series
    Luque, B.
    Lacasa, L.
    Ballesteros, F.
    Luque, J.
    PHYSICAL REVIEW E, 2009, 80 (04)