Exact Solution for a Class of Random Walk on the Hypercube

被引:0
|
作者
Benedetto Scoppola
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
来源
Journal of Statistical Physics | 2011年 / 143卷
关键词
Finite Markov chain; Random walk on the hypercube; Cutoff;
D O I
暂无
中图分类号
学科分类号
摘要
A class of families of Markov chains defined on the vertices of the n-dimensional hypercube, Ωn={0,1}n, is studied. The single-step transition probabilities Pn,ij, with i,j∈Ωn, are given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{n,ij}=\frac{(1-{\alpha})^{d_{ij}}}{(2-{\alpha})^{n}}$\end{document}, where α∈(0,1) and dij is the Hamming distance between i and j. This corresponds to flip independently each component of the vertex with probability \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1-{\alpha}}{2-{\alpha}}$\end{document}. The m-step transition matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{n,ij}^{m}$\end{document} is explicitly computed in a close form. The class is proved to exhibit cutoff. A model-independent result about the vanishing of the first m terms of the expansion in α of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{n,ij}^{m}$\end{document} is also proved.
引用
收藏
页码:413 / 419
页数:6
相关论文
共 50 条
  • [1] Exact Solution for a Class of Random Walk on the Hypercube
    Scoppola, Benedetto
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (03) : 413 - 419
  • [2] A discrete random walk on the hypercube
    Zhang, Jingyuan
    Xiang, Yonghong
    Sun, Weigang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 1 - 7
  • [3] Cutoff for a stratified random walk on the hypercube
    Ben-Hamou, Anna
    Peres, Yuval
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [4] A NON-LOCAL RANDOM WALK ON THE HYPERCUBE
    Nestoridi, Evita
    ADVANCES IN APPLIED PROBABILITY, 2017, 49 (04) : 1288 - 1299
  • [5] On Exact learning from random walk
    Bshouty, Nader H.
    Bentov, Iddo
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2006, 4264 : 184 - 198
  • [6] Optimized quantum random-walk search algorithms on the hypercube
    Potocek, V.
    Gabris, A.
    Kiss, T.
    Jex, I.
    PHYSICAL REVIEW A, 2009, 79 (01)
  • [7] Mixture of random walk solution and quasi-random walk solution to global illumination
    Xu, Q
    Sun, JZ
    Wei, ZC
    Shu, YT
    Cai, J
    SPRING CONFERENCE ON COMPUTER GRAPHICS, PROCEEDINGS, 2001, : 211 - 217
  • [8] On the exact distributional asymptotics for the supremum of a random walk with increments in a class of light-tailed distributions
    Zachary, S.
    Foss, S. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (06) : 1034 - 1041
  • [9] On the exact distributional asymptotics for the supremum of a random walk with increments in a class of light-tailed distributions
    S. Zachary
    S. G. Foss
    Siberian Mathematical Journal, 2006, 47 : 1034 - 1041
  • [10] OPTIMAL CO-ADAPTED COUPLING FOR THE SYMMETRIC RANDOM WALK ON THE HYPERCUBE
    Connor, Stephen
    Jacka, Saul
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) : 703 - 713