An Iterative Method for Time-Fractional Swift-Hohenberg Equation

被引:19
|
作者
Li, Wenjin [1 ]
Pang, Yanni [2 ]
机构
[1] Jilin Univ Finance & Econ, Sch Appl Math, Changchun 130117, Jilin, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
关键词
HOMOTOPY ANALYSIS METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; APPROXIMATE SOLUTION; TRANSFORM METHOD;
D O I
10.1155/2018/2405432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a type of iterative method and apply it to time-fractional Swift-Hohenberg equation with initial value. Using this iterative method, we obtain the approximate analytic solutions with numerical figures to initial value problems, which indicates that such iterative method is effective and simple in constructing approximate solutions to Cauchy problems of time-fractional differential equations.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The Fractional Series Solutions for the Conformable Time-Fractional Swift-Hohenberg Equation through the Conformable Shehu Daftardar-Jafari Approach with Comparative Analysis
    Liaqat, Muhammad Imran
    Okyere, Eric
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [32] Analysis of fractional Swift-Hohenberg equation using a novel computational technique
    Veeresha, Pundikala
    Prakasha, Doddabhadrappla Gowda
    Baleanu, Dumitru
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (04) : 1970 - 1987
  • [33] AVERAGING PRINCIPLES FOR THE SWIFT-HOHENBERG EQUATION
    Gao, Peng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 293 - 310
  • [34] Numerical Solutions to the Time-Fractional Swift–Hohenberg Equation Using Reproducing Kernel Hilbert Space Method
    Attia N.
    Akgül A.
    Seba D.
    Nour A.
    International Journal of Applied and Computational Mathematics, 2021, 7 (5)
  • [35] HE'S HOMOTOPY PERTURBATION METHOD FOR SOLVING TIME FRACTIONAL SWIFT-HOHENBERG EQUATIONS
    Ban, Tao
    Cui, Run-Qing
    THERMAL SCIENCE, 2018, 22 (04): : 1601 - 1605
  • [36] THE TIME-DEPENDENT AMPLITUDE EQUATION FOR THE SWIFT-HOHENBERG PROBLEM
    COLLET, P
    ECKMANN, JP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) : 139 - 153
  • [37] An Efficient Numerical Method for the Quintic Complex Swift-Hohenberg Equation
    Wang, Hanquan
    Yanti, Lina
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (02) : 237 - 254
  • [38] Amplitude equation for the generalized Swift-Hohenberg equation with noise
    Klepel, Konrad
    Bloemker, Dirk
    Mohammed, Wael W.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1107 - 1126
  • [39] Localized States in an Extended Swift-Hohenberg Equation
    Burke, John
    Dawes, Jonathan H. P.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (01): : 261 - 284
  • [40] DYNAMIC BIFURCATION OF THE COMPLEX SWIFT-HOHENBERG EQUATION
    Han, Jongmin
    Yari, Masoud
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (04): : 875 - 891