An Iterative Method for Time-Fractional Swift-Hohenberg Equation

被引:19
|
作者
Li, Wenjin [1 ]
Pang, Yanni [2 ]
机构
[1] Jilin Univ Finance & Econ, Sch Appl Math, Changchun 130117, Jilin, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
关键词
HOMOTOPY ANALYSIS METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; APPROXIMATE SOLUTION; TRANSFORM METHOD;
D O I
10.1155/2018/2405432
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a type of iterative method and apply it to time-fractional Swift-Hohenberg equation with initial value. Using this iterative method, we obtain the approximate analytic solutions with numerical figures to initial value problems, which indicates that such iterative method is effective and simple in constructing approximate solutions to Cauchy problems of time-fractional differential equations.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Proof of Quasipatterns for the Swift-Hohenberg Equation
    Braaksma, Boele
    Iooss, Gerard
    Stolovitch, Laurent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (01) : 37 - 67
  • [22] Defect formation in the Swift-Hohenberg equation
    Galla, T
    Moro, E
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [23] On radial solutions of the Swift-Hohenberg equation
    N. E. Kulagin
    L. M. Lerman
    T. G. Shmakova
    Proceedings of the Steklov Institute of Mathematics, 2008, 261 : 183 - 203
  • [24] Grain boundaries in the Swift-Hohenberg equation
    Haragus, Mariana
    Scheel, Arnd
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 : 737 - 759
  • [25] The Swift-Hohenberg equation with a nonlocal nonlinearity
    Morgan, David
    Dawes, Jonathan H. P.
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 270 : 60 - 80
  • [26] Some examples of Swift-Hohenberg equation
    Jani, Haresh P.
    Singh, Twinkle R.
    EXAMPLES AND COUNTEREXAMPLES, 2022, 2
  • [27] MODULATION EQUATION FOR STOCHASTIC SWIFT-HOHENBERG EQUATION
    Mohammed, Wael W.
    Bloemker, Dirk
    Klepel, Konrad
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 14 - 30
  • [28] The Swift-Hohenberg equation on conic manifolds
    Roidos, Nikolaos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (02)
  • [29] Dislocations in an Anisotropic Swift-Hohenberg Equation
    Haragus, Mariana
    Scheel, Arnd
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (02) : 311 - 335
  • [30] Dislocations in an Anisotropic Swift-Hohenberg Equation
    Mariana Haragus
    Arnd Scheel
    Communications in Mathematical Physics, 2012, 315 : 311 - 335