Endomorphism rings of permutation modules over maximal Young subgroups

被引:4
|
作者
Doty, Stephen
Erdmann, Karin
Henke, Anne [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Loyola Univ, Chicago, IL 60626 USA
关键词
representation theory; centraliser algebras; permutation modules; Schur algebras; p-kostka numbers;
D O I
10.1016/j.jalgebra.2006.02.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field of characteristic two, and let), be a two-part partition of some natural number r. Denote the permutation module corresponding to the (maximal) Young subgroup Sigma(lambda) in Sigma(r) by M-lambda. We construct a full set of orthogonal primitive idempotents of the centraliser subalgebra S-K (lambda) = l(lambda) S-K (2, r) l(lambda) End(K) Sigma(r) (M-lambda) of the Schur algebra S-K (2, r). These idempotents are naturally in one-to-one correspondence with the 2-Kostka numbers. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 396
页数:20
相关论文
共 50 条
  • [1] Endomorphism rings of permutation modules
    Naehrig, Natalie
    JOURNAL OF ALGEBRA, 2010, 324 (05) : 1044 - 1075
  • [2] Permutation Modules with Nakayama Endomorphism Rings
    Li, Xiaogang
    He, Jiawei
    TRANSFORMATION GROUPS, 2024,
  • [3] Modules Over Endomorphism Rings
    María Inés Platzeck
    Melina Verdecchia
    Algebras and Representation Theory, 2015, 18 : 1577 - 1591
  • [4] Modules over Endomorphism Rings
    A. A. Tuganbaev
    Mathematical Notes, 2004, 75 : 836 - 847
  • [5] Modules Over Endomorphism Rings
    Platzeck, Maria Ines
    Verdecchia, Melina
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (06) : 1577 - 1591
  • [6] Modules over endomorphism rings
    Tuganbaev, AA
    MATHEMATICAL NOTES, 2004, 75 (5-6) : 836 - 847
  • [7] ENDOMORPHISM RINGS OF MODULES OVER PRIME RINGS
    Baziar, Mohammad
    Lomp, Christian
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 953 - 962
  • [8] Cellularity of endomorphism algebras of Young permutation modules
    Donkin, Stephen
    JOURNAL OF ALGEBRA, 2021, 572 : 36 - 59
  • [9] Endomorphism rings of some Young modules
    Kochhar, Jasdeep Singh
    ARCHIV DER MATHEMATIK, 2016, 106 (01) : 5 - 14
  • [10] Endomorphism rings of some Young modules
    Jasdeep Singh Kochhar
    Archiv der Mathematik, 2016, 106 : 5 - 14