Permutation Modules with Nakayama Endomorphism Rings

被引:0
|
作者
Li, Xiaogang [1 ]
He, Jiawei [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[2] Nanchang Hangkong Univ, Sch Math & Informat Sci, Nanchang, Peoples R China
关键词
Permutation module; Endomorphism ring; Symmetric algebra; Nakayama algebra;
D O I
10.1007/s00031-024-09842-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a field K of characteristic p > 0 and a natural number n, assuming that G is a permutation group acting on a set Omega with n elements, then KO is a permutation module for G in the natural way. If G is primitive and n <= 5 p, we will show that EndKG(K Omega) is always a symmetric Nakayama algebra unless p = 5 and n = 25. As a consequence, EndKG(K Omega) is always a symmetric Nakayama algebra if G is quasiprimitive, n < 4 p and 3 {' p - 1 when n = 3 p.
引用
收藏
页数:14
相关论文
共 50 条