Endomorphism rings of permutation modules over maximal Young subgroups

被引:4
|
作者
Doty, Stephen
Erdmann, Karin
Henke, Anne [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Loyola Univ, Chicago, IL 60626 USA
关键词
representation theory; centraliser algebras; permutation modules; Schur algebras; p-kostka numbers;
D O I
10.1016/j.jalgebra.2006.02.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field of characteristic two, and let), be a two-part partition of some natural number r. Denote the permutation module corresponding to the (maximal) Young subgroup Sigma(lambda) in Sigma(r) by M-lambda. We construct a full set of orthogonal primitive idempotents of the centraliser subalgebra S-K (lambda) = l(lambda) S-K (2, r) l(lambda) End(K) Sigma(r) (M-lambda) of the Schur algebra S-K (2, r). These idempotents are naturally in one-to-one correspondence with the 2-Kostka numbers. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 396
页数:20
相关论文
共 50 条