Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces

被引:9
|
作者
Isokawa, Y [1 ]
机构
[1] Kagoshima Univ, Fac Educ, Kagoshima 890, Japan
关键词
random tessellation; Voronoi tessellation; mean characteristics; hyperbolic space;
D O I
10.1017/S000186780001017X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces, and give explicit expressions for mean surface area, mean perimeter length, and mean number of vertices of their cells. Furthermore we compare these mean characteristics with those for Poisson-Voronoi tessellations in three-dimensional Euclidean spaces. It is shown that, as the absolute value of the curvature of hyperbolic spaces increases from zero to infinity, these mean characteristics increase monotonically from those for the Euclidean case to infinity.
引用
收藏
页码:648 / 662
页数:15
相关论文
共 50 条
  • [41] Extreme values for characteristic radii of a Poisson-Voronoi Tessellation
    Calka, Pierre
    Chenavier, Nicolas
    EXTREMES, 2014, 17 (03) : 359 - 385
  • [42] PROPERTIES OF A 2-DIMENSIONAL POISSON-VORONOI TESSELATION - A MONTE-CARLO STUDY
    KUMAR, S
    KURTZ, SK
    MATERIALS CHARACTERIZATION, 1993, 31 (01) : 55 - 68
  • [43] Extreme values for characteristic radii of a Poisson-Voronoi Tessellation
    Pierre Calka
    Nicolas Chenavier
    Extremes, 2014, 17 : 359 - 385
  • [44] Calculating the proportion of triangles in a Poisson-Voronoi tessellation of the plane
    Hayen, A
    Quine, M
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2000, 67 (04) : 351 - 358
  • [45] AVERAGE NUMBER OF SIDES FOR THE NEIGHBORS IN A POISSON-VORONOI TESSELATION
    KUMAR, S
    KURTZ, SK
    WEAIRE, D
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1994, 69 (03): : 431 - 435
  • [46] PROPERTIES OF A 3-DIMENSIONAL POISSON-VORONOI TESSELATION - A MONTE-CARLO STUDY
    KUMAR, S
    KURTZ, SK
    BANAVAR, JR
    SHARMA, MG
    JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) : 523 - 551
  • [47] Temporal evolution of the domain structure in a Poisson-Voronoi transformation
    Pineda, Eloi
    Crespo, Daniel
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [48] New Monte Carlo method for planar Poisson-Voronoi cells
    Hilhorst, H. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (11) : 2615 - 2638
  • [49] Statistical properties of Poisson-Voronoi tessellation cells in bounded regions
    Gezer, Fatih
    Aykroyd, Robert G.
    Barber, Stuart
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (05) : 915 - 933
  • [50] Elongated Poisson-Voronoi cells in an empty half-plane
    Calka, Pierre
    Demichel, Yann
    Enriquez, Nathanael
    ADVANCES IN MATHEMATICS, 2022, 410