Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces

被引:9
|
作者
Isokawa, Y [1 ]
机构
[1] Kagoshima Univ, Fac Educ, Kagoshima 890, Japan
关键词
random tessellation; Voronoi tessellation; mean characteristics; hyperbolic space;
D O I
10.1017/S000186780001017X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces, and give explicit expressions for mean surface area, mean perimeter length, and mean number of vertices of their cells. Furthermore we compare these mean characteristics with those for Poisson-Voronoi tessellations in three-dimensional Euclidean spaces. It is shown that, as the absolute value of the curvature of hyperbolic spaces increases from zero to infinity, these mean characteristics increase monotonically from those for the Euclidean case to infinity.
引用
收藏
页码:648 / 662
页数:15
相关论文
共 50 条
  • [21] Tessellations in three-dimensional hyperbolic space from dynamics and the quaternions
    Chung, KW
    Chan, HSY
    Wang, BN
    CHAOS SOLITONS & FRACTALS, 2001, 12 (07) : 1181 - 1197
  • [22] Computation of Centroidal Voronoi Tessellations in High Dimensional Spaces
    Telsang, Bhagyashri
    Djouadi, Seedik M.
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3313 - 3318
  • [23] ON THE DILATED FACETS OF A POISSON-VORONOI TESSELLATION
    Redenbach, Claudia
    IMAGE ANALYSIS & STEREOLOGY, 2011, 30 (01): : 31 - 38
  • [24] On the spectral function of the Poisson-Voronoi cells
    Goldman, A
    Calka, P
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (06): : 1057 - 1082
  • [25] Scaling properties of the area distribution functions and kinetic curves of dense plane discrete Poisson-Voronoi tessellations
    Korobov, A.
    PHYSICAL REVIEW E, 2013, 87 (01):
  • [26] Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations
    Fritzen, Felix
    Boehlke, Thomas
    Schnack, Eckart
    COMPUTATIONAL MECHANICS, 2009, 43 (05) : 701 - 713
  • [27] On the spectral function of the Poisson-Voronoi cells
    Goldman, A
    Calka, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (09): : 835 - 840
  • [28] The optimal centroidal Voronoi tessellations and the Gersho's conjecture in the three-dimensional space
    Du, Q
    Wang, DS
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (9-10) : 1355 - 1373
  • [29] Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations
    F. Fritzen
    T. Böhlke
    E. Schnack
    Computational Mechanics, 2009, 43 : 701 - 713
  • [30] The Poisson-Voronoi tessellation: Relationships for edges
    Muche, L
    ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) : 279 - 296