The temperatures of red supergiants in low-metallicity environments

被引:6
|
作者
Gonzalez-Tora, Gemma [1 ]
Davies, Ben [1 ]
Kudritzki, Rolf-Peter [2 ,3 ]
Plez, Bertrand [4 ]
机构
[1] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool Sci Pk IC2,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England
[2] Univ Sternwarte, LMU Munchen, Scheinerst 1, D-81679 Munich, Germany
[3] Univ Hawaii Manoa, Inst Astron, 2580 Woodlawn Dr, Honolulu, HI 96822 USA
[4] Univ Montpellier, CNRS, LUPM, UMR 5299, F-34095 Montpellier, France
关键词
stars: atmospheres; stars: evolution; stars: fundamental parameters; stars: late-type; stars: massive; M-CIRCLE-DOT; STELLAR EVOLUTION; MAGELLANIC-CLOUD; MIXING-LENGTH; MODELS; ROTATION; ULTRAVIOLET; CLUSTERS; SCALE; GRIDS;
D O I
10.1093/mnras/stab1611
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The temperatures of red supergiants (RSGs) are expected to depend on metallicity (Z) in such a way that lower Z RSGs are warmer. In this work, we investigate the Z-dependence of the Hayashi limit by analysing RSGs in the low-Z galaxy Wolf-Lundmark-Mellote, and compare with the RSGs in the higher Z environments of the Small Magellanic Cloud and Large Magellanic Cloud. We determine the effective temperature (T-eff) of each star by fitting their spectral energy distributions, as observed by VLT + SHOOTER, with MARCS model atmospheres. We find average temperatures of T-effWLM = 4400 +/- 202 K, T-effSMC = 4130 +/- 103 K, and T-effLMC = 4140 +/- 148 K. From population synthesis analysis, we find that although the Geneva evolutionary models reproduce this trend qualitatively, the RSGs in these models are systematically too cool. We speculate that our results can be explained by the inapplicability of the standard solar mixing length to RSGs.
引用
收藏
页码:4422 / 4443
页数:22
相关论文
共 50 条
  • [41] Nucleosynthesis in low-mass, low-metallicity AGB stars
    Iwamoto, N
    Kajino, T
    Mathews, GJ
    Fujimoto, MY
    NUCLEAR PHYSICS A, 2003, 719 : 57C - 60C
  • [42] Extremely Low-Metallicity Stars in the Classical Dwarf Galaxies
    Starkenburg, Else
    GALACTIC ARCHAEOLOGY: NEAR-FIELD COSMOLOGY AND THE FORMATION OF THE MILKY WAY, 2012, 458 : 311 - 314
  • [43] APPLICATIONS OF AN OBSERVATIONAL GRID OF LOW-METALLICITY STELLAR SPECTRA
    TOBIN, W
    NORDSIECK, KH
    ASTRONOMICAL JOURNAL, 1981, 86 (09): : 1360 - 1376
  • [44] Bright Type IIP Supernovae in Low-metallicity Galaxies
    Scott, Spencer
    Nicholl, Matt
    Blanchard, Peter
    Gomez, Sebastian
    Berger, Edo
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 870 (02)
  • [45] Submillimeter observations of the low-metallicity galaxy NGC 4214
    Kiuchi, G
    Ohta, K
    Sawicki, M
    Allen, M
    ASTRONOMICAL JOURNAL, 2004, 128 (06): : 2743 - 2748
  • [46] Low-metallicity Galaxies from the Dark Energy Survey
    Lin, Yu-Heng
    Scarlata, Claudia
    Mehta, Vihang
    Skillman, Evan
    Hayes, Matthew
    McQuinn, Kristen B. W.
    Fortson, Lucy
    Chworowsky, Katherine
    Clarke, Leonardo
    ASTROPHYSICAL JOURNAL, 2023, 951 (02):
  • [47] Core-collapse supernovae in low-metallicity environments and future all-sky transient surveys
    Young, D. R.
    Smartt, S. J.
    Mattila, S.
    Tanvir, N. R.
    Bersier, D.
    Chambers, K. C.
    Kaiser, N.
    Tonry, J. L.
    ASTRONOMY & ASTROPHYSICS, 2008, 489 (01) : 359 - 375
  • [48] H2 formation in low-metallicity galaxies
    Kamaya, H
    Hirashita, H
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2001, 53 (03) : 483 - 488
  • [49] Low-metallicity (sub-SMC) massive stars
    Garcia, Miriam
    Herrero, Artemio
    Najarro, Francisco
    Camacho, Ines
    Lennon, Daniel J.
    Urbaneja, Miguel A.
    Castro, Norberto
    LIVES AND DEATH-THROES OF MASSIVE STARS, 2017, 12 (S329): : 313 - 321
  • [50] ISM properties in low-metallicity environments - I. Mid-infrared spectra of dwarf galaxies
    Madden, SC
    Galliano, F
    Jones, AP
    Sauvage, M
    ASTRONOMY & ASTROPHYSICS, 2006, 446 (03) : 877 - 896