The temperatures of red supergiants in low-metallicity environments

被引:6
|
作者
Gonzalez-Tora, Gemma [1 ]
Davies, Ben [1 ]
Kudritzki, Rolf-Peter [2 ,3 ]
Plez, Bertrand [4 ]
机构
[1] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool Sci Pk IC2,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England
[2] Univ Sternwarte, LMU Munchen, Scheinerst 1, D-81679 Munich, Germany
[3] Univ Hawaii Manoa, Inst Astron, 2580 Woodlawn Dr, Honolulu, HI 96822 USA
[4] Univ Montpellier, CNRS, LUPM, UMR 5299, F-34095 Montpellier, France
关键词
stars: atmospheres; stars: evolution; stars: fundamental parameters; stars: late-type; stars: massive; M-CIRCLE-DOT; STELLAR EVOLUTION; MAGELLANIC-CLOUD; MIXING-LENGTH; MODELS; ROTATION; ULTRAVIOLET; CLUSTERS; SCALE; GRIDS;
D O I
10.1093/mnras/stab1611
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The temperatures of red supergiants (RSGs) are expected to depend on metallicity (Z) in such a way that lower Z RSGs are warmer. In this work, we investigate the Z-dependence of the Hayashi limit by analysing RSGs in the low-Z galaxy Wolf-Lundmark-Mellote, and compare with the RSGs in the higher Z environments of the Small Magellanic Cloud and Large Magellanic Cloud. We determine the effective temperature (T-eff) of each star by fitting their spectral energy distributions, as observed by VLT + SHOOTER, with MARCS model atmospheres. We find average temperatures of T-effWLM = 4400 +/- 202 K, T-effSMC = 4130 +/- 103 K, and T-effLMC = 4140 +/- 148 K. From population synthesis analysis, we find that although the Geneva evolutionary models reproduce this trend qualitatively, the RSGs in these models are systematically too cool. We speculate that our results can be explained by the inapplicability of the standard solar mixing length to RSGs.
引用
收藏
页码:4422 / 4443
页数:22
相关论文
共 50 条
  • [11] The metallicity distribution function of extremely low-metallicity stars
    Beers, TC
    ASTROPHYSICS AND SPACE SCIENCE, 1999, 265 (1-4) : 105 - 113
  • [12] The Metallicity Distribution Function of Extremely low-Metallicity Stars
    T.C. Beers
    Astrophysics and Space Science, 1999, 265 : 105 - 113
  • [13] Thermal and fragmentation properties of star-forming clouds in low-metallicity environments
    Omukai, K
    Tsuribe, T
    Schneider, R
    Ferrara, A
    ASTROPHYSICAL JOURNAL, 2005, 626 (02): : 627 - 643
  • [14] The Stellar IMF in Low-Metallicity Gas
    Glover, S. C. O.
    Clark, P. C.
    Bonnell, I. A.
    Klessen, R. S.
    FIRST STARS AND GALAXIES: CHALLENGES FOR THE NEXT DECADE, 2010, 1294 : 138 - +
  • [15] Disk Fraction in a Low-Metallicity Environment
    Yasui, Chikako
    Kobayashi, Naoto
    Tokunaga, Alan T.
    Saito, Masao
    Tokoku, Chihiro
    EXOPLANETS AND DISKS: THEIR FORMATION AND DIVERSITY, 2009, 1158 : 171 - +
  • [16] Infrared properties of low-metallicity galaxies
    Engelbracht, C. W.
    Gordon, K. D.
    Misselt, K. A.
    Smith, J. D. T.
    Perez-Gonzalez, P. G.
    Rieke, G. H.
    Werner, M. W.
    Vanzi, L.
    Brandl, B. R.
    SPITZER SPACE TELESCOPE: NEW VIEWS OF THE COSMOS, 2006, 357 : 215 - +
  • [17] Star Formation in a Low-Metallicity Gas
    Yoshida, Naoki
    FIRST STARS AND GALAXIES: CHALLENGES FOR THE NEXT DECADE, 2010, 1294 : 297 - 299
  • [18] The early generations of low-metallicity stars
    Bromm, Volker
    STELLAR EVOLUTION AT LOW METALLICITY: MASS LOSS, EXPLOSIONS, COSMOLOGY, 2006, 353 : 285 - 298
  • [19] SUPERNOVA NUCLEOSYNTHESIS IN LOW-METALLICITY POPULATIONS
    JURA, M
    ASTROPHYSICAL JOURNAL, 1986, 301 (02): : 624 - 628
  • [20] Effects of rotation in low-metallicity stars
    Heap, SR
    Lanz, T
    STELLAR ROTATION, 2004, (215): : 220 - 221