Study of Surface Morphology, Elemental Composition and Origin of Atmospheric Aerosols (PM2.5 and PM10) over Agra, India

被引:96
|
作者
Pipal, Atar Singh [1 ]
Jan, Rohi [1 ]
Satsangi, P. G. [1 ]
Tiwari, Suresh [2 ]
Taneja, Ajay [3 ]
机构
[1] Univ Pune, Dept Chem, Pune 411007, Maharashtra, India
[2] Indian Inst Trop Meteorol, New Delhi 110060, India
[3] Dr BR Ambedkar Univ, Dept Chem, Agra 282002, Uttar Pradesh, India
关键词
Mass and number concentration of PM; Physicochemical properties; Carbon analysis; Seasonal variation; Source identification; FINE ORGANIC AEROSOL; RIVER DELTA REGION; MIXING STATE; AMBIENT AIR; CARBONACEOUS AEROSOL; PARTICULATE MATTER; AIRBORNE PARTICLES; URBAN-ENVIRONMENT; CITY; SOOT;
D O I
10.4209/aaqr.2014.01.0017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In situ measurements of PM (PM2.5 and PM10) particles were carried out using a medium volume air sampler (offline) and particle number concentrations of PM were measured by a Grimm aerosol spectrophotometer (online) during the study period of 2010-2011. The morphology and elemental composition analyses of PM were performed by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDS), respectively. The average mass concentrations of PM2.5 and PM10 were 97.2 and 242.6 mu g/m(3) at roadside (RD) and 121.2 and 230.5 mu g/m(3) at a semirural (SR) site, respectively. These concentrations were substantially higher than the NAAQS, WHO and USEPA standards. The highest mass and number concentrations of PM2.5 and PM10 were observed during winter, followed by those during the post-monsoon period and summer, with the lowest in the monsoon period. SEM and EDS analysis of PM indicated the presence of soot, mineral, tarballs, fly ash, aluminosilicates/silica, fluorine, carbon rich, and Cl-Na rich particles. Of these particles, soot, tarballs, and F-C rich particles dominate in PM2.5, whereas mineral, aluminosilicates, and Cl-Na rich particles dominate in PM10. The morphology and elemental composition of the particles varied over the seasons due to atmospheric processing. The highest carbon concentration (56%) was observed in PM2.5 during summer at the RD, while in the monsoon, post-monsoon period and winter the carbon concentration was similar to 9% lower at the RD as compared to the SR. However, the concentration of carbon in PM10 was similar to 38% higher at the RD as compared to SR during both summer and winter. Air mass backward trajectory cluster analysis was performed, and the results indicate that the aerosol loadings over Agra are mainly transported from the Middle East and Arabian Sea during the summer and monsoon period, while during the pre-monsoon period and winter the aerosol loadings came from the northern region, and were due to the burning of biomass and coal, as well as other local activities.
引用
收藏
页码:1685 / 1700
页数:16
相关论文
共 50 条
  • [31] Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India
    Sharma, M
    Maloo, S
    ATMOSPHERIC ENVIRONMENT, 2005, 39 (33) : 6015 - 6026
  • [32] Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia
    Griffith Univ, Nathan
    Atmos Environ, 22 (3773-3785):
  • [33] Speciation and origin of PM10 and PM2.5 in selected European cities
    Querol, X
    Alastuey, A
    Ruiz, CR
    Artiñano, B
    Hansson, HC
    Harrison, RM
    Buringh, E
    ten Brink, HM
    Lutz, M
    Bruckmann, P
    Straehl, P
    Schneider, J
    ATMOSPHERIC ENVIRONMENT, 2004, 38 (38) : 6547 - 6555
  • [34] Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro
    Cusack, M.
    Talbot, N.
    Ondracek, J.
    Minguillon, M. C.
    Martins, V.
    Klouda, K.
    Schwarz, J.
    Zdimal, V.
    ATMOSPHERIC ENVIRONMENT, 2015, 118 : 176 - 183
  • [35] Characterization of chemical species in PM2.5 and PM10 aerosols in Hong kong
    Ho, KF
    Lee, SC
    Chan, CK
    Yu, JC
    Chow, JC
    Yao, XH
    ATMOSPHERIC ENVIRONMENT, 2003, 37 (01) : 31 - 39
  • [36] Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia
    Chan, YC
    Simpson, RW
    Mctainsh, GH
    Vowles, PD
    Cohen, DD
    Bailey, GM
    ATMOSPHERIC ENVIRONMENT, 1997, 31 (22) : 3773 - 3785
  • [37] Fireworks-a source of nanoparticles, PM2.5, PM10, and carbonaceous aerosols
    Pirker, Luka
    Velkavrh, Ziga
    Osite, Agnese
    Drinovec, Luka
    Mocnik, Grisa
    Remskar, Maja
    AIR QUALITY ATMOSPHERE AND HEALTH, 2022, 15 (07): : 1275 - 1286
  • [38] Elemental Composition and Health Risk Assessment of PM10 and PM2.5 in the Roadside Microenvironment in Tianjin, China
    Zhang, Jing
    Wu, Lin
    Fang, Xiaozhen
    Li, Fenghua
    Yang, Zhiwen
    Wang, Ting
    Mao, Hongjun
    Wei, Enqi
    AEROSOL AND AIR QUALITY RESEARCH, 2018, 18 (07) : 1817 - 1827
  • [39] Characterization of PM10 and PM2.5 emission sources at Chennai, India
    Jose, Jithin
    Srimuruganandam, B.
    Nagendra, S.M. Shiva
    Nature Environment and Pollution Technology, 2019, 18 (02) : 555 - 562
  • [40] Elemental characterization of PM10, PM2.5 and PM1 in the town of Genoa (Italy)
    Ariola, V
    D'Alessandro, A
    Lucarelli, F
    Marcazzan, G
    Mazzei, F
    Nava, S
    Garcia-Orellana, I
    Prati, P
    Valli, G
    Vecchi, R
    Zucchiatti, A
    CHEMOSPHERE, 2006, 62 (02) : 226 - 232