Hyperspectral Image Classification via Spectral-Spatial Shared Kernel Ridge Regression

被引:6
|
作者
Zhao, Chunhui [1 ]
Liu, Wu [2 ]
Xu, Yan [3 ]
Wen, Jinhuan [4 ]
机构
[1] Harbin Engn Univ, Coll Informat & Telecommun, Harbin 150001, Heilongjiang, Peoples R China
[2] Fifth Elect Res Inst MIIT, Software Qual Engn Res Ctr, Guangzhou 510610, Guangdong, Peoples R China
[3] Mississippi State Univ, Elect & Comp Engn, Starkville, MS 39762 USA
[4] Northwestern Polytech Univ, Sch Sci, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) classification; kernel ridge regression (KRR); ridge linear regression (RLR); shared subspace learning (SL);
D O I
10.1109/LGRS.2019.2913884
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose the kernel version of the recently introduced spectral-spatial shared linear regression (SSSLR) for hyperspectral image (HSI) classification. Original SSSLR used original data space-based shared subspace learning (SL) model and spectral-spatial-based ridge linear regression (RLR) to learn a subspace projection matrix. However, HSI data sets have multivariate attributes and are often linearly inseparable, thereby limiting the classification performance of the conventional SSSLR. Hence, we introduce a modified kernel version of SSSLR algorithm [spectral-spatial shared kernel ridge regression (SSSKRR)] in which nonlinear high-dimensional feature space-based shared SL model is included into the kernel ridge regression (KRR). Finally, an efficient singular value decomposition (SVD)-based alternating iterative algorithm is used to obtain the optimal classification results. Experiments results show that the proposed SSSKRR had superior classification performance compared to the state-of-the-art SL algorithms.
引用
收藏
页码:1874 / 1878
页数:5
相关论文
共 50 条
  • [41] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [42] Spectral-Spatial Methods for Hyperspectral Image Classification. Review
    Borzov S.M.
    Potaturkin O.I.
    Optoelectronics, Instrumentation and Data Processing, 2018, 54 (6) : 582 - 599
  • [43] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    REMOTE SENSING, 2019, 11 (16)
  • [44] Spectral-Spatial Classification of Hyperspectral Image Based on Discriminant Analysis
    Yuan, Haoliang
    Tang, Yuan Yan
    Lu, Yang
    Yang, Lina
    Luo, Huiwu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2035 - 2043
  • [45] Spectral-Spatial Global Graph Reasoning for Hyperspectral Image Classification
    Wang, Di
    Du, Bo
    Zhang, Liangpei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12924 - 12937
  • [46] Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification
    Houari, Youcef Moudjib
    Duan, Haibin
    Zhang, Baochang
    Maher, Ali
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 221 - 225
  • [47] Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification
    Wang Feifei
    Zhao Huijie
    Li Na
    Li Siyuan
    Cai Yu
    ACTA PHOTONICA SINICA, 2023, 52 (12)
  • [48] Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification
    Zhou, Yicong
    Wei, Yantao
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (07) : 1667 - 1678
  • [49] Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Zhu, Minghao
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    Wang, Jianing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 449 - 462
  • [50] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61