Hyperspectral Image Classification via Spectral-Spatial Shared Kernel Ridge Regression

被引:6
|
作者
Zhao, Chunhui [1 ]
Liu, Wu [2 ]
Xu, Yan [3 ]
Wen, Jinhuan [4 ]
机构
[1] Harbin Engn Univ, Coll Informat & Telecommun, Harbin 150001, Heilongjiang, Peoples R China
[2] Fifth Elect Res Inst MIIT, Software Qual Engn Res Ctr, Guangzhou 510610, Guangdong, Peoples R China
[3] Mississippi State Univ, Elect & Comp Engn, Starkville, MS 39762 USA
[4] Northwestern Polytech Univ, Sch Sci, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) classification; kernel ridge regression (KRR); ridge linear regression (RLR); shared subspace learning (SL);
D O I
10.1109/LGRS.2019.2913884
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose the kernel version of the recently introduced spectral-spatial shared linear regression (SSSLR) for hyperspectral image (HSI) classification. Original SSSLR used original data space-based shared subspace learning (SL) model and spectral-spatial-based ridge linear regression (RLR) to learn a subspace projection matrix. However, HSI data sets have multivariate attributes and are often linearly inseparable, thereby limiting the classification performance of the conventional SSSLR. Hence, we introduce a modified kernel version of SSSLR algorithm [spectral-spatial shared kernel ridge regression (SSSKRR)] in which nonlinear high-dimensional feature space-based shared SL model is included into the kernel ridge regression (KRR). Finally, an efficient singular value decomposition (SVD)-based alternating iterative algorithm is used to obtain the optimal classification results. Experiments results show that the proposed SSSKRR had superior classification performance compared to the state-of-the-art SL algorithms.
引用
收藏
页码:1874 / 1878
页数:5
相关论文
共 50 条
  • [31] Spectral-spatial hyperspectral image ensemble classification via joint sparse representation
    Zhang, Erlei
    Zhang, Xiangrong
    Jiao, Licheng
    Li, Lin
    Hou, Biao
    PATTERN RECOGNITION, 2016, 59 : 42 - 54
  • [32] Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12): : 7738 - 7749
  • [33] Spectral-Spatial Weighted Sparse Regression for Hyperspectral Image Unmixing
    Zhang, Shaoquan
    Li, Jun
    Li, Heng-Chao
    Deng, Chengzhi
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3265 - 3276
  • [34] Class-Specific Sparse Multiple Kernel Learning for Spectral-Spatial Hyperspectral Image Classification
    Liu, Tianzhu
    Gu, Yanfeng
    Jia, Xiuping
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12): : 7351 - 7365
  • [35] Edge-Modified Superpixel Based Spectral-Spatial Kernel Method for Hyperspectral Image Classification
    Chen Y.-J.
    Ma C.-Y.
    Sun L.
    Zhan T.-M.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (01): : 73 - 81
  • [36] Spectral-spatial hyperspectral image classification with dual spatial ensemble learning
    Fu, Wentao
    Sun, Xiyan
    Ji, Yuanfa
    Bai, Yang
    REMOTE SENSING LETTERS, 2021, 12 (12) : 1194 - 1206
  • [37] A spectral-spatial kernel-based method for hyperspectral imagery classification
    Li, Li
    Ge, Hongwei
    Gao, Jianqiang
    ADVANCES IN SPACE RESEARCH, 2017, 59 (04) : 954 - 967
  • [38] HYPERSPECTRAL IMAGE CLASSIFICATION VIA TENSOR RIDGE REGRESSION
    Liu, Jianjun
    Chen, Hao
    Tang, Songze
    Yang, Jinlong
    Yan, Hong
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1156 - 1159
  • [39] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [40] SPECTRAL-SPATIAL MULTISCALE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Shi
    Jing, Haitao
    Xue, Huazhu
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 389 - 395