Hyperspectral Image Classification via Spectral-Spatial Shared Kernel Ridge Regression

被引:6
|
作者
Zhao, Chunhui [1 ]
Liu, Wu [2 ]
Xu, Yan [3 ]
Wen, Jinhuan [4 ]
机构
[1] Harbin Engn Univ, Coll Informat & Telecommun, Harbin 150001, Heilongjiang, Peoples R China
[2] Fifth Elect Res Inst MIIT, Software Qual Engn Res Ctr, Guangzhou 510610, Guangdong, Peoples R China
[3] Mississippi State Univ, Elect & Comp Engn, Starkville, MS 39762 USA
[4] Northwestern Polytech Univ, Sch Sci, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) classification; kernel ridge regression (KRR); ridge linear regression (RLR); shared subspace learning (SL);
D O I
10.1109/LGRS.2019.2913884
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose the kernel version of the recently introduced spectral-spatial shared linear regression (SSSLR) for hyperspectral image (HSI) classification. Original SSSLR used original data space-based shared subspace learning (SL) model and spectral-spatial-based ridge linear regression (RLR) to learn a subspace projection matrix. However, HSI data sets have multivariate attributes and are often linearly inseparable, thereby limiting the classification performance of the conventional SSSLR. Hence, we introduce a modified kernel version of SSSLR algorithm [spectral-spatial shared kernel ridge regression (SSSKRR)] in which nonlinear high-dimensional feature space-based shared SL model is included into the kernel ridge regression (KRR). Finally, an efficient singular value decomposition (SVD)-based alternating iterative algorithm is used to obtain the optimal classification results. Experiments results show that the proposed SSSKRR had superior classification performance compared to the state-of-the-art SL algorithms.
引用
收藏
页码:1874 / 1878
页数:5
相关论文
共 50 条
  • [1] Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification
    Yuan, Haoliang
    Tang, Yuan Yan
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (04) : 934 - 945
  • [2] Spectral-Spatial Large Kernel Attention Network for Hyperspectral Image Classification
    Wu, Chunran
    Tong, Lei
    Zhou, Jun
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [3] Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine
    Chen, Chen
    Li, Wei
    Su, Hongjun
    Liu, Kui
    REMOTE SENSING, 2014, 6 (06) : 5795 - 5814
  • [4] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):
  • [5] SPECTRAL-SPATIAL KERNEL MINIMUM NOISE FRACTION TRANSFORMATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhao, Bin
    Yuan, Zhao
    Sigurdsson, Jakob
    Ulfarsson, Magnus O.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7218 - 7221
  • [6] Spectral-Spatial Kernel Regularized for Hyperspectral Image Denoising
    Yuan, Yuan
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07): : 3815 - 3832
  • [7] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [8] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    REMOTE SENSING, 2024, 16 (13)
  • [9] Spectral-Spatial Hyperspectral Classification via Structural-Kernel Collaborative Representation
    Tu, Bing
    Zhou, Chengle
    Liao, Xiaolong
    Zhang, Guoyun
    Peng, Yishu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 861 - 865
  • [10] Ideal Kernel-Based Multiple Kernel Learning for Spectral-Spatial Classification of Hyperspectral Image
    Gao, Wei
    Peng, Yu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1051 - 1055