On the intersection of k-Lucas sequences and some binary sequences

被引:3
|
作者
Rihane, Salah Eddine [1 ]
Togbe, Alain [2 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
[2] Purdue Univ Northwest, Dept Math Stat & Comp Sci, 1401 SUS 421, Westerville, IN 46391 USA
关键词
k-generalized Lucas numbers; Linear form in logarithms; Reduction method; PERFECT POWERS; FIBONACCI; SUMS;
D O I
10.1007/s10998-021-00387-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an integer k >= 2, let (L-n((k)))(n) be the k-generalized Lucas sequence which starts with 0, ... , 0, 2,1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all k-generalized Lucas numbers which are Fibonacci, Pell or Pell-Lucas numbers, i.e., we study the Diophantine equations L-n((k)) = F-m, L-n((k)) = P-m and L-n((k)) = Q(m) in positive integers n, m, k with k >= 3.
引用
收藏
页码:125 / 145
页数:21
相关论文
共 50 条
  • [41] On the stability of certain Lucas sequences modulo 2(k)
    Carlip, W
    Jacobson, E
    FIBONACCI QUARTERLY, 1996, 34 (04): : 298 - 305
  • [42] Melham's sums for some Lucas polynomial sequences
    Chung, Chan-Liang
    Zhong, Chunmei
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (02) : 383 - 409
  • [43] Supercongruences on some binomial sums involving Lucas sequences
    Mao, Guo-Shuai
    Pan, Hao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1061 - 1078
  • [44] On Some New Arithmetic Properties of the Generalized Lucas Sequences
    Andrica, Dorin
    Bagdasar, Ovidiu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
  • [45] Identities and Relations Associated with Lucas and some Special Sequences
    Ozdemir, Gulsah
    Simsek, Yilmaz
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [46] SOME CONGRUENCE PROPERTIES OF GENERALIZED LUCAS INTEGRAL SEQUENCES
    BISHT, CS
    FIBONACCI QUARTERLY, 1984, 22 (04): : 290 - 295
  • [47] DEDEKIND SUMS AND SOME GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Dilcher, Karl
    Meyer, Jeffrey L.
    FIBONACCI QUARTERLY, 2010, 48 (03): : 260 - 264
  • [48] On Some New Arithmetic Properties of the Generalized Lucas Sequences
    Dorin Andrica
    Ovidiu Bagdasar
    Mediterranean Journal of Mathematics, 2021, 18
  • [49] Some Golden Ratio generalized Fibonacci and Lucas sequences
    Leyendekkers, J. V.
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2016, 22 (01) : 33 - 41
  • [50] Palindromes in Lucas Sequences
    Florian Luca
    Monatshefte für Mathematik, 2003, 138 : 209 - 223