On the intersection of k-Lucas sequences and some binary sequences

被引:3
|
作者
Rihane, Salah Eddine [1 ]
Togbe, Alain [2 ]
机构
[1] Univ Ctr Mila, Inst Sci & Technol, Dept Math, Mila, Algeria
[2] Purdue Univ Northwest, Dept Math Stat & Comp Sci, 1401 SUS 421, Westerville, IN 46391 USA
关键词
k-generalized Lucas numbers; Linear form in logarithms; Reduction method; PERFECT POWERS; FIBONACCI; SUMS;
D O I
10.1007/s10998-021-00387-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an integer k >= 2, let (L-n((k)))(n) be the k-generalized Lucas sequence which starts with 0, ... , 0, 2,1 (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all k-generalized Lucas numbers which are Fibonacci, Pell or Pell-Lucas numbers, i.e., we study the Diophantine equations L-n((k)) = F-m, L-n((k)) = P-m and L-n((k)) = Q(m) in positive integers n, m, k with k >= 3.
引用
收藏
页码:125 / 145
页数:21
相关论文
共 50 条
  • [21] Some new properties of hyperbolic k-Fibonacci and k-Lucas octonions
    Godase, A. D.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (01) : 100 - 110
  • [22] On the k-Fibonacci and k-Lucas spinors
    Kumari, Munesh
    Prasad, Kalika
    Frontczak, Robert
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (02) : 322 - 335
  • [23] On the size of the intersection of two Lucas sequences of distinct type II
    Cipu Mihai
    Mignotte Maurice
    Togbe Alain
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) : 1299 - 1316
  • [24] On the size of the intersection of two Lucas sequences of distinct type II
    Mihai Cipu
    Maurice Mignotte
    Alain Togbé
    Science China Mathematics, 2011, 54 : 1299 - 1316
  • [25] Trisection method by k-Lucas numbers
    Demir, Ali
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) : 339 - 345
  • [26] SOME SUBSEQUENCES OF THE GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Kilic, Emrah
    Kilic, Elif Tan
    UTILITAS MATHEMATICA, 2015, 97 : 233 - 239
  • [27] Squares in Lucas sequences and¶some Diophantine equations
    Takaaki Kagawa
    Nobuhiro Terai
    manuscripta mathematica, 1998, 96 : 195 - 202
  • [28] On some new results for the generalised Lucas sequences
    Andrica, Dorin
    Bagdasar, Ovidiu
    Turcas, George Catalin
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (01): : 17 - 36
  • [29] SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Irmak, Nurettin
    Alp, Murat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 331 - 338
  • [30] FERMAT k-FIBONACCI AND k-LUCAS NUMBERS
    Bravo, Jhon J.
    Herrera, Jose L.
    MATHEMATICA BOHEMICA, 2020, 145 (01): : 19 - 32