Performance projections for ballistic graphene nanoribbon field-effect transistors

被引:210
|
作者
Liang, Gengchiau [1 ]
Neophytou, Neophytos
Nikonov, Dmitri E.
Lundstrom, Mark S.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
关键词
ballistic; bandstructure; carbon; current density; graphite; MOSFET; nanotechnology; nanowire; quantum confinement;
D O I
10.1109/TED.2007.891872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The upper limit performance potential of ballistic carbon nanoribbon MOSFETs (CNR MOSFETs) is examined. We calculate the bandstructure of nanoribbons using a single p(z)-orbital tight-binding method and evaluate the current-voltage characteristics of a nanoribbon MOSFET using a semiclassical ballistic model. We find that semiconducting ribbons. a few nanometers in width behave electronically in a manner similar to carbon nanotubes, achieving similar ON-current performance. Our calculations show that semiconducting CNR transistors can be candidates for high-mobility digital switches, with the potential to outperform the silicon MOSFET. Although wide ribbons have small bandgaps, which would increase subthreshold leakage due to band to band tunneling, their ON-current capabilities could still be attractive for certain applications.
引用
收藏
页码:677 / 682
页数:6
相关论文
共 50 条
  • [41] Graphene field-effect transistors
    Reddy, Dharmendar
    Register, Leonard F.
    Carpenter, Gary D.
    Banerjee, Sanjay K.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (31)
  • [42] Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors
    Kliros, George S.
    NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 11
  • [43] Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors
    George S Kliros
    Nanoscale Research Letters, 9
  • [44] Effect of Uniaxial Strain on the Current-Voltage Characteristics of Graphene Nanoribbon Field-Effect Transistors
    Kliros, George S.
    2013 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), VOLS 1-2, 2013, : 27 - 30
  • [45] Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors
    El Abbassi, Maria
    Perrin, Mickael L.
    Barin, Gabriela Borin
    Sangtarash, Sara
    Overbeck, Jan
    Braun, Oliver
    Lambert, Colin J.
    Sun, Qiang
    Prechtl, Thorsten
    Narita, Akimitsu
    Muellen, Klaus
    Ruffieux, Pascal
    Sadeghi, Hatef
    Fasel, Roman
    Calame, Michel
    ACS NANO, 2020, 14 (05) : 5754 - 5762
  • [46] Coulomb-energy featured capture kinetics in graphene nanoribbon field-effect transistors
    Lu, Ming-Pei
    PHYSICAL REVIEW B, 2012, 86 (04):
  • [47] Negative Differential Resistance and Steep Switching in Chevron Graphene Nanoribbon Field-Effect Transistors
    Smith, Samuel
    Llinas, Juan-Pablo
    Bokor, Jeffrey
    Salahuddin, Sayeef
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (01) : 143 - 146
  • [48] Finite size effects on the gate leakage current in graphene nanoribbon field-effect transistors
    Mao, Ling-Feng
    NANOTECHNOLOGY, 2009, 20 (27)
  • [49] Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation
    Liang, Gengchiau
    Neophytou, Neophytos
    Lundstrom, Mark S.
    Nikonov, Dmitri E.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (05)
  • [50] Ballistic carbon nanotube field-effect transistors
    Ali Javey
    Jing Guo
    Qian Wang
    Mark Lundstrom
    Hongjie Dai
    Nature, 2003, 424 : 654 - 657