Performance projections for ballistic graphene nanoribbon field-effect transistors

被引:210
|
作者
Liang, Gengchiau [1 ]
Neophytou, Neophytos
Nikonov, Dmitri E.
Lundstrom, Mark S.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
关键词
ballistic; bandstructure; carbon; current density; graphite; MOSFET; nanotechnology; nanowire; quantum confinement;
D O I
10.1109/TED.2007.891872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The upper limit performance potential of ballistic carbon nanoribbon MOSFETs (CNR MOSFETs) is examined. We calculate the bandstructure of nanoribbons using a single p(z)-orbital tight-binding method and evaluate the current-voltage characteristics of a nanoribbon MOSFET using a semiclassical ballistic model. We find that semiconducting ribbons. a few nanometers in width behave electronically in a manner similar to carbon nanotubes, achieving similar ON-current performance. Our calculations show that semiconducting CNR transistors can be candidates for high-mobility digital switches, with the potential to outperform the silicon MOSFET. Although wide ribbons have small bandgaps, which would increase subthreshold leakage due to band to band tunneling, their ON-current capabilities could still be attractive for certain applications.
引用
收藏
页码:677 / 682
页数:6
相关论文
共 50 条
  • [21] Optimum design for the ballistic diode based on graphene field-effect transistors
    Van Huy Nguyen
    Dinh Cong Nguyen
    Sunil Kumar
    Minwook Kim
    Dongwoon Kang
    Yeonjae Lee
    Naila Nasir
    Malik Abdul Rehman
    Thi Phuong Anh Bach
    Jongwan Jung
    Yongho Seo
    npj 2D Materials and Applications, 5
  • [22] Optimum design for the ballistic diode based on graphene field-effect transistors
    Nguyen, Van Huy
    Nguyen, Dinh Cong
    Kumar, Sunil
    Kim, Minwook
    Kang, Dongwoon
    Lee, Yeonjae
    Nasir, Naila
    Rehman, Malik Abdul
    Bach, Thi Phuong Anh
    Jung, Jongwan
    Seo, Yongho
    NPJ 2D MATERIALS AND APPLICATIONS, 2021, 5 (01)
  • [23] Gate capacitance model for the design of graphene nanoribbon array field-effect transistors
    Son, Myungwoo
    Ki, Hangil
    Kim, Kihyeun
    Chung, Sunki
    Lee, Woong
    Ham, Moon-Ho
    RSC ADVANCES, 2015, 5 (68) : 54861 - 54866
  • [24] Performance and design of vertical, ballistic, heterostructure field-effect transistors
    Wernersson, LE
    Litwin, A
    Samuelson, L
    Xu, HQ
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 51 (1-3): : 76 - 80
  • [25] RF Performance Limits of Ballistic Si Field-Effect Transistors
    Pan, Andrew
    Chui, Chi On
    2014 IEEE 14TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), 2014, : 68 - 70
  • [26] Diluted chirality dependence in edge rough graphene nanoribbon field-effect transistors
    Tseng, F.
    Unluer, D.
    Holcomb, K.
    Stan, M. R.
    Ghosh, A. W.
    APPLIED PHYSICS LETTERS, 2009, 94 (22)
  • [27] Quantum transport simulation of graphene-nanoribbon field-effect transistors with defects
    Chen, Shanmeng
    Van de Put, Maarten L.
    Fischetti, Massimo, V
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) : 21 - 37
  • [28] Room-Temperature Graphene-Nanoribbon Tunneling Field-Effect Transistors
    Hwang, Wan Sik
    Zhao, Pei
    Kim, Sung Geun
    Yan, Rusen
    Klimeck, Gerhard
    Seabaugh, Alan
    Fullerton-Shirey, Susan K.
    Xing, Huili Grace
    Jena, Debdeep
    NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
  • [29] Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics
    Jeong, Beomjin
    Wuttke, Michael
    Zhou, Yazhou
    Muellen, Klaus
    Narita, Akimitsu
    Asadi, Kamal
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 2667 - 2671
  • [30] Graphene Nanoribbon Tunneling Field-Effect Transistors With a Semiconducting and a Semimetallic Heterojunction Channel
    Da, Haixia
    Lam, Kai-Tak
    Samudra, G.
    Chin, Sai-Kong
    Liang, Gengchiau
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (05) : 1454 - 1461