Fault-Criticality Assessment for AI Accelerators using Graph Convolutional Networks

被引:0
|
作者
Chaudhuri, Arjun [1 ]
Talukdar, Jonti [1 ]
Jung, Jinwook [2 ]
Nam, Gi-Joon [2 ]
Chakrabarty, Krishnendu [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27706 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Owing to the inherent fault tolerance of deep neural networks (DNNs), many structural faults in DNN accelerators tend to be functionally benign. In order to identify functionally critical faults, we analyze the functional impact of stuck-at faults in the processing elements of a 128x128 systolic-array accelerator that performs inferencing on the MNIST dataset. We present a 2-tier machine-learning framework that leverages graph convolutional networks (GCNs) for quick assessment of the functional criticality of structural faults. We describe a computationally efficient methodology for data sampling and feature engineering to train the GCN-based framework. The proposed framework achieves up to 90% classification accuracy with negligible misclassification of critical faults.
引用
收藏
页码:1596 / 1599
页数:4
相关论文
共 50 条
  • [41] Component segmentation of engineering drawings using Graph Convolutional Networks
    Zhang, Wentai
    Joseph, Joe
    Yin, Yue
    Xie, Liuyue
    Furuhata, Tomotake
    Yamakawa, Soji
    Shimada, Kenji
    Kara, Levent Burak
    COMPUTERS IN INDUSTRY, 2023, 147
  • [42] Detection of rumor conversations in Twitter using graph convolutional networks
    Serveh Lotfi
    Mitra Mirzarezaee
    Mehdi Hosseinzadeh
    Vahid Seydi
    Applied Intelligence, 2021, 51 : 4774 - 4787
  • [43] Graph Convolutional Networks Using Node Addition and Edge Reweighting
    Lee, Wen-Yu
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 368 - 377
  • [44] Efficient Analysis of Transactional Data Using Graph Convolutional Networks
    Hall, Hamish
    Baiz, Pedro
    Nadler, Philip
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2021, 1525 : 210 - 225
  • [45] Improved Graph Convolutional Neural Networks-based Cellular Network Fault Diagnosis
    Gao, Zongzhen
    Liu, Wenlai
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (02):
  • [46] SUPREME: multiomics data integration using graph convolutional networks
    Kesimoglu, Ziynet Nesibe
    Bozdag, Serdar
    NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (02)
  • [47] Segmentation of Buildings in Aerial Photographs Using Graph Convolutional Networks
    A. A. Zakharov
    M. V. Zakharova
    A. L. Zhiznyakov
    Pattern Recognition and Image Analysis, 2024, 34 (4) : 1216 - 1222
  • [48] Collaborative Filtering on Bipartite Graphs using Graph Convolutional Networks
    Kim, Minkyu
    Kim, Jinho
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 304 - 307
  • [49] A unified framework on node classification using graph convolutional networks
    Mithe, Saurabh
    Potika, Katerina
    2020 SECOND INTERNATIONAL CONFERENCE ON TRANSDISCIPLINARY AI (TRANSAI 2020), 2020, : 67 - 74
  • [50] Detection of rumor conversations in Twitter using graph convolutional networks
    Lotfi, Serveh
    Mirzarezaee, Mitra
    Hosseinzadeh, Mehdi
    Seydi, Vahid
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4774 - 4787