Fault-Criticality Assessment for AI Accelerators using Graph Convolutional Networks

被引:0
|
作者
Chaudhuri, Arjun [1 ]
Talukdar, Jonti [1 ]
Jung, Jinwook [2 ]
Nam, Gi-Joon [2 ]
Chakrabarty, Krishnendu [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27706 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Owing to the inherent fault tolerance of deep neural networks (DNNs), many structural faults in DNN accelerators tend to be functionally benign. In order to identify functionally critical faults, we analyze the functional impact of stuck-at faults in the processing elements of a 128x128 systolic-array accelerator that performs inferencing on the MNIST dataset. We present a 2-tier machine-learning framework that leverages graph convolutional networks (GCNs) for quick assessment of the functional criticality of structural faults. We describe a computationally efficient methodology for data sampling and feature engineering to train the GCN-based framework. The proposed framework achieves up to 90% classification accuracy with negligible misclassification of critical faults.
引用
收藏
页码:1596 / 1599
页数:4
相关论文
共 50 条
  • [21] Fault diagnosis of power transformers using graph convolutional network
    Liao, Wenlong
    Yang, Dechang
    Wang, Yusen
    Ren, Xiang
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2021, 7 (02): : 241 - 249
  • [22] Fault detection in seismic data using graph convolutional network
    Patitapaban Palo
    Aurobinda Routray
    Rahul Mahadik
    Sanjai Singh
    The Journal of Supercomputing, 2023, 79 : 12737 - 12765
  • [23] Fault detection in seismic data using graph convolutional network
    Palo, Patitapaban
    Routray, Aurobinda
    Mahadik, Rahul
    Singh, Sanjai
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (11): : 12737 - 12765
  • [24] Predicting Influence Probabilities using Graph Convolutional Networks
    Liu, Jing
    Chen, Yudi
    Li, Duanshun
    Park, Noseong
    Lee, Kisung
    Lee, Dongwon
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 860 - 869
  • [25] Encrypted Traffic Classification Using Graph Convolutional Networks
    Mo, Shuang
    Wang, Yifei
    Xiao, Ding
    Wu, Wenrui
    Fan, Shaohua
    Shi, Chuan
    ADVANCED DATA MINING AND APPLICATIONS, 2020, 12447 : 207 - 219
  • [26] Protein Interface Prediction using Graph Convolutional Networks
    Fout, Alex
    Byrd, Jonathon
    Shariat, Basir
    Ben-Hur, Asa
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [27] Novel biomolecular fingerprint using graph convolutional networks
    Risheh, Ali
    Forouzesh, Negin
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 142A - 142A
  • [28] Sentence Compression Using BERT and Graph Convolutional Networks
    Park, Yo-Han
    Lee, Gyong-Ho
    Choi, Yong-Seok
    Lee, Kong-Joo
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [29] Bangla News Classification using Graph Convolutional Networks
    Rahman, Md Mahbubur
    Khan, Md Akib Zabed
    Biswas, Al Amin
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [30] Modeling students' performance using graph convolutional networks
    Mubarak, Ahmed A.
    Cao, Han
    Hezam, Ibrahim M.
    Hao, Fei
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (03) : 2183 - 2201