Kernel estimation;
regression function gradient;
multivariate regression;
constrained bandwidth matrix;
kernel smoothing;
mean integrated square error;
BANDWIDTH MATRIX SELECTORS;
CHOICE;
D O I:
10.1080/03610926.2018.1532518
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper is focused on kernel estimation of the gradient of a multivariate regression function. Despite the importance of this topic, the progress in this area is rather slow. Our aim is to construct a gradient estimator using the idea of local linear estimator for a regression function. The quality of this estimator is expressed in terms of the Mean Integrated Square Error. We focus on a choice of bandwidth matrix. Further, we present some data-driven methods for its choice and develop a new approach. The performance of presented methods is illustrated using a simulation study and real data example.
机构:
Yunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R ChinaYunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R China
Li, Wenjuan
Wang, Wenying
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R ChinaYunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R China
Wang, Wenying
Chen, Jingsi
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R ChinaYunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R China
Chen, Jingsi
Rao, Weidong
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Peoples R ChinaYunnan Univ Finance & Econ, Sch Stat & Math, Kunming 650221, Peoples R China