Local linear kernel estimation of the discontinuous regression function

被引:0
|
作者
I. R. Sánchez-Borrego
M. D. Martínez-Miranda
A. González-Carmona
机构
[1] Universidad de Granada,Departamento de Estadística e Investigación Operativa, Facultad de Ciencias
来源
Computational Statistics | 2006年 / 21卷
关键词
Discontinuity; Jump point; Change point; Local linear kernel regression; Nonparametric regression;
D O I
暂无
中图分类号
学科分类号
摘要
We address the problems of estimating the discontinuous regression function and also its jump points. We propose a method in two steps: we first estimate the jumps and finally the regression function is estimated by an adapted version of a local linear smoother which makes use of the estimated jumps. The practical performance of the proposed method is evaluated by using simulation studies and an application to a real-life problem.
引用
收藏
页码:557 / 569
页数:12
相关论文
共 50 条
  • [1] Local linear kernel estimation of the discontinuous regression function
    Sanchez-Borrego, I. R.
    Martinez-Miranda, M. D.
    Gonzalez-Carmona, A.
    COMPUTATIONAL STATISTICS, 2006, 21 (3-4) : 557 - 569
  • [2] Local linear kernel estimation for discontinuous nonparametric regression functions
    Gao, JT
    Pettitt, AN
    Wolff, RCL
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (12) : 2871 - 2894
  • [3] Kernel estimation of discontinuous regression functions
    Kang, KH
    Koo, JY
    Park, CW
    STATISTICS & PROBABILITY LETTERS, 2000, 47 (03) : 277 - 285
  • [4] Local linear estimation of the regression function with Hilbertian variables
    Demongeot, Jacques
    Laksaci, Ali
    Naceri, Amina
    Rachdi, Mustapha
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (08) : 847 - 850
  • [5] Kernel estimation of regression function gradient
    Kroupova, Monika
    Horova, Ivana
    Kolacek, Jan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (01) : 135 - 151
  • [6] Local linear estimation of the regression function for twice censored data
    Ouafae Benrabah
    Feriel Bouhadjera
    Elias Ould Saïd
    Statistical Papers, 2022, 63 : 489 - 514
  • [7] Local linear estimation of the regression function for twice censored data
    Benrabah, Ouafae
    Bouhadjera, Feriel
    Said, Elias Ould
    STATISTICAL PAPERS, 2022, 63 (02) : 489 - 514
  • [8] Twicing local linear kernel regression smoothers
    Zhang, Wenzhuan
    Xia, Yingcun
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 399 - 417
  • [9] Optimal kernel shapes for local linear regression
    Ormoneit, D
    Hastie, T
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 540 - 546